期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Self-assembly synthesis of phosphorus-doped tubular g-C_(3)N_(4);Ti_(3)C_(2)MXene Schottky junction for boosting photocatalytic hydrogen evolution 被引量:2
1
作者 Kelei Huang Chunhu Li +3 位作者 Xiuli Zhang Liang Wang Wentai Wang Xiangchao Meng 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期233-245,共13页
Establishing highly effective charge transfer channels in carbon nitride(g-C_(3)N_(4)) to enhance its photocatalytic activity is still a challenging issue.Herein,the delaminated 2D Ti_(3)C_(2) MXene nanosheets were em... Establishing highly effective charge transfer channels in carbon nitride(g-C_(3)N_(4)) to enhance its photocatalytic activity is still a challenging issue.Herein,the delaminated 2D Ti_(3)C_(2) MXene nanosheets were employed to decorate the P-doped tubular g-C_(3)N_(4)(PTCN)for engineering 1D/2D Schottky heterojunction(PTCN/TC)through electrostatic self-assembly.The optimized PTCN/TC exhibited the highest hydrogen evolution rate(565 μmol h^(-1)g^(-1)),which was 4.3 and 2.0-fold higher than pristine bulk g-C_(3)N_(4) and PTCN,respectively.Such enhancement may be primarily attributed to the phosphorus heteroatom doped and unique structure of 1D/2D g-C_(3)N_(4)/Ti_(3)C_(2) Schottky heterojunction,enhancing the light-harvesting and charges’separation.One-dimensional pathway of g-C_(3)N_(4) tube and built-in electric field of interfacial Schottky effect can significantly facilitate the spatial separation of photogenerated charge carriers,and simultaneously inhibit their recombination via Schottky barrier.In this composite,metallic Ti_(3)C_(2) was served as electrons sink and photons collector.Moreover,ultrathin Ti_(3)C_(2) flake with exposed terminal metal sites as a co-catalyst exhibited higher photocatalytic reactivity in H2 evolution compared to carbon materials(such as reduced graphene oxide).This work not only proposed the mechanism of tubular g-C_(3)N_(4)/Ti_(3)C_(2) Schottky junction in photocatalysis,but also provided a feasible way to load ultrathin Ti_(3)C_(2) as a co-catalyst for designing highly efficient photocatalysts. 展开更多
关键词 Tubular g-C_(3)N_(4) Ti_(3)C_(2)MXene schottky junction PHOTOCATALYST Hydrogen evolution
下载PDF
Construction of Mo/Mo_(2)C@C modified ZnIn_(2)S_(4)Schottky junctions for efficient photo-thermal assisted hydrogen evolution 被引量:1
2
作者 Xiu-Qing Qiao Wenxuan Chen +4 位作者 Chen Li Zizhao Wang Dongfang Hou Bojing Sun Dong-Sheng Li 《Materials Reports(Energy)》 EI 2023年第4期71-81,共11页
Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anch... Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anchored carbon layer(Mo/Mo_(2)C@C)was obtained by a one-step in-situ phase transition approach and developed for the first time as a photothermal cocatalyst to enhance the activity of ZnIn_(2)S_(4)photocatalyst.Mo/Mo_(2)C@C nanosheet exhibits strong absorption in the full spectrum region and excellent photo-thermal conversion ability,which generates heat to improve the reaction temperature and accelerate the reaction kinetics.Moreover,metallic Mo/Mo_(2)C@C couples with ZnIn_(2)S_(4)to form ZnIn_(2)S_(4)-Mo/Mo_(2)C@C Schottky junction(denoted as ZMM),which prevents the electrons back transfer and restrains the charge recombination.In addition,conductive carbon with strong interfacial interaction serves as a fast charge transport bridge.Consequently,the optimized ZMM-0.2 junction exhibits an H2 evolution rate of 1031.07μmol g^(-1)h^-(1),which is 41 and 4.3 times higher than bare ZnIn_(2)S_(4)and ZnIn_(2)S_(4)-Mo2C,respectively.By designing novel photothermal cocatalysts,our work will provide a new guidance for designing efficient photocatalysts. 展开更多
关键词 Molybdenum carbide Photo-thermal conversion H_(2)evolution schottky junction
下载PDF
Lateral resistance reduction induced by light-controlled leak current in silicon-based Schottky junction
3
作者 王拴虎 张勖 +3 位作者 邹吕宽 赵靓 王文鑫 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期448-452,共5页
Lateral resistance of silicon-based p-type and n-type Schottky junctions is investigated. After one electrode on a metallic film is irradiated, the differential lateral resistance of the system is dependent on the dir... Lateral resistance of silicon-based p-type and n-type Schottky junctions is investigated. After one electrode on a metallic film is irradiated, the differential lateral resistance of the system is dependent on the direction of the bias current:it keeps constant in one direction and decreases in the opposite direction. By systematically investigating the electrical potential changes in silicon and the junction, we propose a new mechanism based on light-controlled leak current. Our work provides an insight into the nature of this phenomenon and will facilitate the advanced design of switchable devices. 展开更多
关键词 resistance reduction schottky junction photovoltaic effect
下载PDF
In-situ fabrication of on-chip 1T'-MoTe_(2)/Ge Schottky junction photodetector for self-powered broadband infrared imaging and position sensing
4
作者 Menglei Zhu Kunxuan Liu +9 位作者 Di Wu Yunrui Jiang Xue Li Pei Lin Zhifeng Shi Xinjian Li Ran Ding Yalun Tang Xuechao Yu Longhui Zeng 《Nano Research》 SCIE EI CSCD 2024年第6期5587-5594,共8页
High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two... High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two-dimensional(2D)topological semimetals promising candidates for the realization of multifunctional optoelectronic devices.Here,we demonstrated the in-situ construction of high-performance 1T’-MoTe_(2)/Ge Schottky junction device by inserting an ultrathin AlOx passivation layer.The good detection performance with an ultra-broadband detection wavelength range of up to 10.6 micron,an ultrafast response time of~160 ns,and a large specific detectivity of over 109 Jones in mid-infrared(MIR)range surpasses that of most 2D materials-based IR sensors,approaching the performance of commercial IR photodiodes.The on-chip integrated device arrays with 64 functional detectors feature high-resolution imaging capability at room temperature.All these outstanding detection features have enabled the demonstration of position-sensitive detection applications.It demonstrates an exceptional position sensitivity of 14.9 mV/mm,an outstanding nonlinearity of 6.44%,and commendable trajectory tracking and optoelectronic demodulation capabilities.This study not only offers a promising route towards room-temperature MIR optoelectronic applications,but also demonstrates a great potential for application in optical sensing systems. 展开更多
关键词 MoTe_(2) broadband photodetection schottky junction IMAGING position sensitive detector
原文传递
S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity
5
作者 Shuai Wang Xin Du +4 位作者 Changhao Yao Yifeng Cai Huiyuan Ma Baojiang Jiang Jun Ma 《Nano Research》 SCIE EI CSCD 2023年第2期2152-2162,共11页
Designing photocatalysts with high light utilization and efficient photogenerated carrier separation for pollutant degradation is one of the important topics for sustainable development.In this study,hierarchical core... Designing photocatalysts with high light utilization and efficient photogenerated carrier separation for pollutant degradation is one of the important topics for sustainable development.In this study,hierarchical core–shell materialα-Fe_(2)O_(3)@ZnIn_(2)S_(4)with a step-scheme(S-scheme)heterojunction is synthesized by in situ growth technique,and MXene Ti_(3)C_(2)quantum dots(QDs)are introduced to construct a double-heterojunction tandem mechanism.The photodegradation efficiency ofα-Fe_(2)O_(3)@ZnIn_(2)S_(4)/Ti_(3)C_(2)QDs to bisphenol A is 96.1%and its reaction rate constant attained 0.02595 min^(−1),which is 12.3 times that of pureα-Fe_(2)O_(3).Meanwhile,a series of characterizations analyze the reasons for the enhanced photocatalytic activity,and the charge transport path of the S-scheme heterojunction/Schottky junction tandem is investigated.The construction of the S-scheme heterojunction enables the photo-generated electrons ofα-Fe_(2)O_(3)and the holes of ZnIn2S4 to transfer and combine under the action of the reverse built-in electric field.Due to the metallic conductivity of Ti_(3)C_(2)QDs,the photogenerated electrons of ZnIn_(2)S_(4)are further transferred to Ti_(3)C_(2)QDs to form a Schottky junction,which in turn forms a double-heterojunction tandem mechanism,showing a remarkable charge separation efficiency.This work provides a new opinion for the construction of tandem double heterojunctions to degrade harmful pollutants. 展开更多
关键词 α-Fe_(2)O_(3) ZnIn2S4 MXene Ti_(3)C_(2)quantum dots(QDs) step-scheme heterojunction schottky junction bisphenol A
原文传递
Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
6
作者 田魁元 刘勇 +1 位作者 杜江锋 于奇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期470-477,共8页
A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the inte... A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the interface of high-K and low-K layers due to the different dielectric constants of high-K and low-K dielectric layers.A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode(JBS),so the distribution of electric field in JBS becomes more uniform.At the same time,the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-K dielectric layer and an enhancement of breakdown voltage can be achieved.Numerical simulations demonstrate that GaN JBS with a specific on-resistance(R_(on,sp)) of 2.07 mΩ·cm^(2) and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure,resulting in a high figure-of-merit(FOM) of 8.6 GW/cm^(2),and a low turn-on voltage of 0.6 V. 展开更多
关键词 GaN junction barrier schottky diode compound dielectric breakdown voltage turn-on voltage
下载PDF
The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction 被引量:4
7
作者 Shengnan Lu Qingliang Liao +5 位作者 Junjie Qi Shuo Liu Yichong Liu Qijie Liang Guangjie Zhang Yue Zhang 《Nano Research》 SCIE EI CAS CSCD 2016年第2期372-379,共8页
This paper describes a novel strategy to weaken the piezopotential screening effect by forming Schottky junctions on the ZnO surface through the introduction of Au particles onto the surface. With this approach, the p... This paper describes a novel strategy to weaken the piezopotential screening effect by forming Schottky junctions on the ZnO surface through the introduction of Au particles onto the surface. With this approach, the piezoelectric-energyconversion performance was greatly enhanced. The output voltage and current density of the Au@ZnO nanoarray-based piezoelectric nanogenerator reached 2 V and 1 μA/cm^2, respectively, 10 times higher than the output of pristine ZnO nanoarray-based piezoelectric nanogenerators. We attribute this enhancement to dramatic suppression of the screening effect due to the decreased carrier concentration, as determined by scanning Kelvin probe microscope measurements and impedance analysis. The lowered capacitance of the Au@ZnO nanoarraybased piezoelectric nanogenerator also contributes to the improved output. This work provides a novel method to enhance the performance of piezoelectric nanogenerators and possibly extends to piezotronics and piezophototronics. 展开更多
关键词 screening effect piezopotential schottky junction Au@ZnO nanoarrays piezoelectric nanogenerator
原文传递
Edge termination study and fabrication of a 4H-SiC junction barrier Schottky diode 被引量:3
8
作者 陈丰平 张玉明 +3 位作者 张义门 汤晓燕 王悦湖 陈文豪 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期446-450,共5页
The 4H-SiC junction barrier Schottky (JBS) diodes terminated by field guard rings and offset field plate are designed, fabricated and characterized. It is shown experimentally that a 3-μm P-type implantation window... The 4H-SiC junction barrier Schottky (JBS) diodes terminated by field guard rings and offset field plate are designed, fabricated and characterized. It is shown experimentally that a 3-μm P-type implantation window spacing gives an optimum trade-off between forward drop voltage and leakage current density for these diodes, yielding a specific on-resistance of 8.3 mΩ-cm2. A JBS diode with a turn-on voltage of 0.65 V and a reverse current density less than 1 A/cm2 under 500 V is fabricated, and the reverse recovery time is tested to be 80 ns, and the peak reverse current is 28.1 mA. Temperature-dependent characteristics are also studied in a temperature range of 75 °C-200 °C. The diode shows a stable Schottky barrier height of up to 200°C and a stable operation under a continuous forward current of 100 A/cm2. 展开更多
关键词 4H-SIC junction barrier schottky offset field plate electrical characteristics
下载PDF
Temperature-dependent characteristics of 4H-SiC junction barrier Schottky diodes 被引量:3
9
作者 陈丰平 张玉明 +3 位作者 张义门 汤晓燕 王悦湖 陈文豪 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期400-404,共5页
The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value ... The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature. A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown. Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time. Finally, a discussion of reducing the reverse recovery time is presented. 展开更多
关键词 4H SiC junction barrier schottky diode temperature dependence electrical characteristics
下载PDF
Experimental and numerical analyses of high voltage 4H-SiC junction barrier Schottky rectifiers with linearly graded field limiting ring 被引量:2
10
作者 王向东 邓小川 +3 位作者 王永维 王勇 文译 张波 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期490-494,共5页
This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are... This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termi- nation, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length. 展开更多
关键词 4H-SIC junction barrier schottky rectifier linearly graded field limiting ring breakdown voltage
下载PDF
Study of 4H-SiC junction barrier Schottky diode using field guard ring termination 被引量:1
11
作者 陈丰平 张玉明 +2 位作者 吕红亮 张义门 黄建华 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期515-518,共4页
This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and rev... This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination. 展开更多
关键词 4H-SIC junction barrier schottky diode ANNEALING electrical characteristics
下载PDF
Study of a double epi-layers SiC junction barrier Schottky rectifiers embedded P layer in the drift region 被引量:1
12
作者 宋庆文 张玉明 +2 位作者 张义门 张倩 吕红亮 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期548-553,共6页
This paper proposes a double epi-layers 4H-SiC junction barrier Schottky rectifier (JBSR) with embedded P layer (EPL) in the drift region. The structure is characterized by the P-type layer formed in the n-type dr... This paper proposes a double epi-layers 4H-SiC junction barrier Schottky rectifier (JBSR) with embedded P layer (EPL) in the drift region. The structure is characterized by the P-type layer formed in the n-type drift layer by epitaxial overgrowth process. The electric field and potential distribution are changed due to the buried P-layer, resulting in a high breakdown voltage (BV) and low specific on-resistance (Ron,sp). The influences of device parameters, such as the depth of the embedded P+ regions, the space between them and the doping concentration of the drift region, etc., on BV and Ron,sp are investigated by simulations, which provides a particularly useful guideline for the optimal design of the device. The results indicate that BV is increased by 48.5% and Baliga's figure of merit (BFOM) is increased by 67.9% compared to a conventional 4H-SiC JBSR. 展开更多
关键词 junction barrier schottky rectifier 4H-SiC breakdown voltage specific on-resistance
下载PDF
High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions 被引量:1
13
作者 郑柳 张峰 +10 位作者 刘胜北 董林 刘兴昉 樊中朝 刘斌 闫果果 王雷 赵万顺 孙国胜 何志 杨富华 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期568-573,共6页
4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state re... 4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm^2 with a total active area of 2.46× 10 ^-3 cm^2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250 ℃ in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9× 10^-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. 展开更多
关键词 4H-SIC junction barrier schottky (JBS) diode high-temperature annealed resistive terminationextension (HARTE)
下载PDF
High response Schottky ultraviolet photodetector formed by PEDOT:PSS transparent electrode contacts to Mg_(0.1)Zn_(0.9)O
14
作者 胡佐富 吴怀昊 +1 位作者 吕燕伍 张希清 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期423-425,共3页
In this paper, we report a Schottky ultraviolet photodetector based on poly(3,4-ethylenedioxy-thiophene)poly(styrenesulfonate)(PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I-V characteristic cu... In this paper, we report a Schottky ultraviolet photodetector based on poly(3,4-ethylenedioxy-thiophene)poly(styrenesulfonate)(PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I-V characteristic curves of the device are measured in the dark condition and under the illumination of a 340-nm UV light. The device shows a typical rectifying behavior with a current rectification ratio of 103 at ±2 V, which exhibits a good Schottky behavior. The phototo-dark current ratio is high, which is 1×103at-4 V. A peak response of 0.156 A/W at 340 nm is observed. The device also exhibits a wide response from 250 nm to 340 nm, with a response larger than 0.1 A/W. It covers the UV-B region(280 nm-320 nm), which makes the device very suitable for the detection of UV-B light. 展开更多
关键词 schottky junction ultraviolet photodetector MGZNO PEDOT:PSS
下载PDF
Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
15
作者 王旌丞 陈浩 +6 位作者 万琳丰 牟草源 刘尧峰 成绍恒 王启亮 李柳暗 李红东 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期429-433,共5页
Hill-like polycrystalline diamond grains(HPDGs)randomly emerged on a heavy boron-doped p+single-crystal diamond(SCD)film by prolonging the growth duration of the chemical vapor deposition process.The Raman spectral re... Hill-like polycrystalline diamond grains(HPDGs)randomly emerged on a heavy boron-doped p+single-crystal diamond(SCD)film by prolonging the growth duration of the chemical vapor deposition process.The Raman spectral results confirm that a relatively higher boron concentration(~1.1×10^(21) cm^(-3))is detected on the HPDG with respect to the SCD region(~5.4×10^(20) cm^(-3)).It demonstrates that the Au/SCD interface can be modulated from ohmic to Schottky contact by varying the surface from hydrogen to oxygen termination.The current-voltage curve between two HPDGs is nearly linear with either oxygen or hydrogen termination,which means that the HPDGs provide a leakage path to form an ohmic contact.There are obvious rectification characteristics between oxygen-terminated HPDGs and SCD based on the difference in boron doping levels in those regions.The results reveal that the highly boron-doped HPDGs grown in SCD can be adopted as ohmic electrodes for Hall measurement and electronic devices. 展开更多
关键词 CVD diamond film boron-doped diamond film ohmic contact schottky junction
下载PDF
Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets
16
作者 龙云泽 尹志华 +2 位作者 惠雯 陈兆甲 万梅香 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2707-2711,共5页
This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotu... This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ= 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. 展开更多
关键词 schottky junctions rectifying effect conducting polymer nanostructures
下载PDF
High gain,broadband p-WSe_(2)/n-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector
17
作者 Shuo Li Qiang Wu +8 位作者 Haokun Ding Songsong Wu Xinwei Cai Rui Wang Jun Xiong Guangyang Lin Wei Huang Songyan Chen Cheng Li 《Nano Research》 SCIE EI CSCD 2023年第4期5796-5802,共7页
Mixed-dimensional van der Waals(vdW)heterostructures based on two-dimensional transition metal dichalcogenides and threedimensional semiconductors have led to a new era in next-generation optoelectronics due to the hi... Mixed-dimensional van der Waals(vdW)heterostructures based on two-dimensional transition metal dichalcogenides and threedimensional semiconductors have led to a new era in next-generation optoelectronics due to the high-quality interfaces and energy band complementation,especially in broadband photodetectors which can be used for all-weather navigation,object identification,etc.However,the reported photodetectors conventionally operated in photodiode mode with low responsivity and a narrow response spectrum.In this study,we report a p-WSe_(2)/n-Ge vdW heterojunction phototransistor with a Schottky barrier collector on n-Ge for broadband photodetection.Large hole/electron injection ratio from p-WSe_(2)/n-Ge heterojunction under forward bias due to their large bandgap offset renders the high photocurrent gain,while the Ge Schottky barrier limits the dark current.The responsivities of the phototransistor at 1.0 V emitter-collector bias are 55,95,and 120 A·W−1 at 405,1,310,and 1,550 nm,respectively,which is superior to that of the corresponding p-WSe_(2)/n-Ge photodiodes.The phototransistor shows a high photocurrent gain of 80,a specific detectivity of 1011 Jones,as well as a fast response time of 290μs at 1,550 nm.The results suggest that the novel phototransistor being implemented with complementary metal-oxide-semiconductor processing is an ideal strategy for high-performance broadband photodetection. 展开更多
关键词 BROADBAND van der Waals(vdW)heterojunction schottky junction PHOTOTRANSISTOR
原文传递
Sn/n3O4-x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance 被引量:5
18
作者 Rui-qi Yang Na Liang +7 位作者 Xuan-yu Chen Long-wei Wang Guo-xin Song Yan-chen Ji Na Ren Ya-wei Lü Jian Zhang Xin Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期150-159,共10页
Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light.However, owing to its rapid recombination of photogenerated electron-hole pairs, its absorption is not sufficient for practical app... Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light.However, owing to its rapid recombination of photogenerated electron-hole pairs, its absorption is not sufficient for practical application.In this work, a Sn nanoparticle/Sn3O4-x nanosheet heterostructure was prepared by in situ reduction of Sn3O4 under a H2 atmosphere.The Schottky junctions formed between Sn and Sn3O4-x can enhance the photogenerated carrier separation ability.During the hydrogenation process, a portion of the oxygen in the semiconductor can be extracted by hydrogen to form water, resulting in an increase in oxygen vacancies in the semiconductor.The heterostructure showed the ability to remove Rhodamine B.Cell cytocompatibility experiments proved that Sn/Sn3O4-x can significantly enhance cell compatibility and reduce harm to organisms.This work provides a new method for the fabrication of a Schottky junction composite photocatalyst rich in oxygen vacancies with enhanced photocatalytic performance. 展开更多
关键词 PHOTOCATALYSIS tin oxide oxygen vacancy schottky junction PHOTODEGRADATION
下载PDF
Hole transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole for efficient optoelectronic applications as an active layer
19
作者 郑燕琼 William J.Potscavage Jr +2 位作者 张建华 魏斌 黄荣娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期428-431,共4页
In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole(TBDI),in this article TBDI is used as an active layer but not a buffer... In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole(TBDI),in this article TBDI is used as an active layer but not a buffer layer in a photodetector(PD),organic light-emitting diode(OLED),and organic photovoltaic cell(OPV) for the first time.Firstly,the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate(BAlq) are investigated.Based on the absorption properties,an organic PD with a peak absorption at 320 nm is fabricated,and a relatively-high detectivity of 2.44×10^(11) cm· Hz^(1/2)/W under 320-nm illumination is obtained.The TBDI/tris(8-hydroxyquinoline) aluminum(Alq_3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4,4-bis[N-(l-naphthyl)-N-phenyl-amino]biphenyl(α-NPD)/Alq_3 OLED.A C_(70)-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%,which is much higher than 1.7%for an α-NPD-based junction in the same configuration.These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with a low-concentration donor. 展开更多
关键词 5 10 15-tribenzyl-5H-diindolo[3 2-a:3' 2'-c]-carbazole PHOTODETECTOR organic light-emitting diode schottky junction
下载PDF
A Bulk‑Heterostructure Nanocomposite Electrolyte of Ce_(0.8)Sm_(0.2)O_(2‑δ)-SrTiO_(3) for Low‑Temperature Solid Oxide Fuel Cells
20
作者 Yixiao Cai Yang Chen +7 位作者 Muhammad Akbar Bin Jin Zhengwen Tu Naveed Mushtaq Baoyuan Wang Xiangyang Qu Chen Xia Yizhong Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期66-79,共14页
Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite,heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel ce... Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite,heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells(SOFCs).However,so far,the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3.In this study,a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3(SDC–STO)are developed in a new bulk-heterostructure form and evaluated as electrolytes.The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550°C for the optimal composition of 4SDC–6STO.Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm^−1 at 450–550°C,which shows remarkable enhancement compared to that of simplex SDC.Via AC impedance analysis,it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance.Furthermore,a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell.Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs. 展开更多
关键词 Bulk-heterostructure SOFC electrolyte Ionic conductivity schottky junction Work function
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部