Organic active units often transform into radical intermediates during the redox processes but exhibit poor cycling stability due to the uncontrollable redox of the radicals. Herein, we report a facile and efficient s...Organic active units often transform into radical intermediates during the redox processes but exhibit poor cycling stability due to the uncontrollable redox of the radicals. Herein, we report a facile and efficient strategy to modulate the molecular orbital energies, charge transport capacities, and spin electron densities of the active units in covalent organic frameworks(COFs) via regulating the conjugated unit size to optimize the redox activity and stability of the organic radicals. COFs based on different imide conjugated units exhibit tunable discharge voltages, rate performance and cycling stabilities. Detailed characterizations and theoretical calculation reveal that imide radicals are the important active intermediates during the redox processes of these COFs. Specifically, increasing the size of the imide conjugated units could effectively delocalize the radical electrons and improve the stability of the COFs electrodes. This study offers a very effective strategy to modulate the redox chemistry of organic materials for electrochemical energy storage.展开更多
This paper reviewed the recent research progress of organic reactions catalyzed by four typical earthabundant and 3d metal catalysts:Mn,Fe,Co,and Ni complexes and mainly focused on the reactions in which these 3d meta...This paper reviewed the recent research progress of organic reactions catalyzed by four typical earthabundant and 3d metal catalysts:Mn,Fe,Co,and Ni complexes and mainly focused on the reactions in which these 3d metal catalysts exhibited obvious advantages over other catalysts.The mechanism that makes these 3d metal catalysts show unusual properties is another focus of this paper.An outlook on 3d metal complexes-catalyzed organic reactions was also considered.展开更多
基金supports from the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20200109141640095)the Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (No. ZDSYS20200421111401738)+3 种基金the Leading Talents of Guangdong Province Program (No. 2016LJ06C536)the GuangdongHong Kong-Macao Joint Laboratory (No. 2019B121205001)the National Natural Science Foundation of China (No. 21875097)the support from the Hong Kong Research Grants Council (Project number CityU 11218420)。
文摘Organic active units often transform into radical intermediates during the redox processes but exhibit poor cycling stability due to the uncontrollable redox of the radicals. Herein, we report a facile and efficient strategy to modulate the molecular orbital energies, charge transport capacities, and spin electron densities of the active units in covalent organic frameworks(COFs) via regulating the conjugated unit size to optimize the redox activity and stability of the organic radicals. COFs based on different imide conjugated units exhibit tunable discharge voltages, rate performance and cycling stabilities. Detailed characterizations and theoretical calculation reveal that imide radicals are the important active intermediates during the redox processes of these COFs. Specifically, increasing the size of the imide conjugated units could effectively delocalize the radical electrons and improve the stability of the COFs electrodes. This study offers a very effective strategy to modulate the redox chemistry of organic materials for electrochemical energy storage.
基金the National Key R&D Program of China(grant no.2021YFA1500200)the National Natural Science Foundation of China(grant nos.92256301,22221002,22025109,21831008,22101286,and 22271249)the Fundamental Research Funds for the Central Universities(grant nos.226-2022-00224 and 226-2023-00115)for financial support.
文摘This paper reviewed the recent research progress of organic reactions catalyzed by four typical earthabundant and 3d metal catalysts:Mn,Fe,Co,and Ni complexes and mainly focused on the reactions in which these 3d metal catalysts exhibited obvious advantages over other catalysts.The mechanism that makes these 3d metal catalysts show unusual properties is another focus of this paper.An outlook on 3d metal complexes-catalyzed organic reactions was also considered.