Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(...Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.展开更多
This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to sc...This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.展开更多
The aim of this paper was to identify the trends and hot topics in the study of scientific collaboration via scientometric analysis. Information visualization and knowledge domain visualization techniques were adopted...The aim of this paper was to identify the trends and hot topics in the study of scientific collaboration via scientometric analysis. Information visualization and knowledge domain visualization techniques were adopted to determine how the study of scientific collaboration has evolved. A total of 1,455 articles on scientific cooperation published between 1993 and 2007 were retrieved from the SCI, SSCI and A&HCI databases with a topic search of scientific collaboration or scientific cooperation for the analysis. By using CiteSpace, the knowledge bases, research foci, and research fronts in the field of scientific collaboration were studied. The results indicated that research fronts and research foci are highly consistent in terms of the concept, origin, measurement, and theory of scientific collaboration. It also revealed that research fronts included scientific collaboration networks, international scientific collaboration, social network analysis and techniques, and applications of bibliometrical indicators, webmetrics, and health care related areas.展开更多
A P2P scientific collaboration is a P2P network whose members can share documents, co-compile papers and codes, and communicate with each other instantly. From the simulation experiment we found that P2P collaboration...A P2P scientific collaboration is a P2P network whose members can share documents, co-compile papers and codes, and communicate with each other instantly. From the simulation experiment we found that P2P collaboration system is a power-law network with a tail between -2 and -3.We utilized the algorithm that searches by high-degree shortcuts to improve the scalability of p2p collaboration system. The experimental result shows that the algorithm works better than random walk algorithm.展开更多
Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid ass...Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid assigning subjective weights.Design/methodology/approach:We applied four centrality measures(degree centrality,betweenness centrality,closeness centrality and eigenvector centrality)and authors’published papers to the scientific collaboration network.The grey relational analysis(GRA)method based on information entropy was used to measure an author’s impact in the collaboration network.The weight of each evaluation index was determined based on information entropy.The ACM SIGKDD collaboration network was selected as an example to demonstrate the practicality and effectiveness of our method.Findings:Author influence was not always positively correlated with evaluation indexes such as degree centrality and betweenness centrality.This implies that combined effects of multiple indexes should be considered in author impact analysis.The introduction of the GRA method based on information entropy can reduce the interference of human factors in the evaluation process.Research limitations:We only analyzed author influence from the perspective of scientific collaboration,but the impact of citation on author influence was ignored.Practical implications:The proposed method can be also applied to detect influential authors in bibliographic co-citation network,author co-citation network,bibliographic coupling network or author coupling network.It would help facilitate scientific collaboration and enhance scholarly communication.Originality/value:This paper proposes an analytical method of evaluating author influence in scientific collaboration networks,in which combined effects of multiple indexes are considered and the interference of human factors is reduced in the evaluation process.展开更多
In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act ...In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.展开更多
We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distrib...We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distribution based on our model obeys a power-law form, which is in agreement with the recently empirical evidences. In addition, our model displays the small-world effect and the hierarchical structure.展开更多
The Chinese urban system is currently experiencing a fundamental shift, as it moves from a size-based hierarchy to a network-based system. Contemporary studies of city networks have tended to focus on economic interac...The Chinese urban system is currently experiencing a fundamental shift, as it moves from a size-based hierarchy to a network-based system. Contemporary studies of city networks have tended to focus on economic interactions without paying sufficient attention to the issue of knowledge flow. Using data on co-authored papers obtained from China Academic Journal Network Publishing Database (CAJNPD) during 2014-2016, this study explores several features of the scientific collaboration network between Chinese mainland cities. The study concludes that: (1) the spatial organization of scientific cooperation amongst Chinese cities is shifting from a jurisdiction-based hierarchical system to a networked system; and (2) several highly intra-connected city regions were found to exist in the network of knowledge, and such regions had more average internal linkages (14.21) than external linkages (8.69), and higher average internal linkage degrees (14.43) than external linkage degrees (10.43); and (3) differences existed in terms of inter-region connectivity between the Western, Eastern, and Central China regional networks (the average INCD of the three regional networks were 109.65, 95.81, and 71.88). We suggest that China should engage in the development of regional and subregional scientific centers to achieve the goal of building an innovative country. Whilst findings reveal a high degree of concentration in those networks - a characteristic which reflects the hierarchical nature of China's urban economic structure - the actual spatial distribution of city networks of knowledge flow was found to be different from that of city networks based on economic outputs or population.展开更多
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20010103)。
文摘Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.
基金Supported by the National Social Science Foundation of China(No.14CTQ045)China Postdoctoral Science Foundation(No.2015M570131)
文摘This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.
基金supported by the National Natural Science Foundation of China(Grant Nos.70773015,70431001 and 70620140115)the National Social Sciences Foundation(Grant No.07CTQ008)the Project of DUT(Grant No.DUTHS1002)
文摘The aim of this paper was to identify the trends and hot topics in the study of scientific collaboration via scientometric analysis. Information visualization and knowledge domain visualization techniques were adopted to determine how the study of scientific collaboration has evolved. A total of 1,455 articles on scientific cooperation published between 1993 and 2007 were retrieved from the SCI, SSCI and A&HCI databases with a topic search of scientific collaboration or scientific cooperation for the analysis. By using CiteSpace, the knowledge bases, research foci, and research fronts in the field of scientific collaboration were studied. The results indicated that research fronts and research foci are highly consistent in terms of the concept, origin, measurement, and theory of scientific collaboration. It also revealed that research fronts included scientific collaboration networks, international scientific collaboration, social network analysis and techniques, and applications of bibliometrical indicators, webmetrics, and health care related areas.
文摘A P2P scientific collaboration is a P2P network whose members can share documents, co-compile papers and codes, and communicate with each other instantly. From the simulation experiment we found that P2P collaboration system is a power-law network with a tail between -2 and -3.We utilized the algorithm that searches by high-degree shortcuts to improve the scalability of p2p collaboration system. The experimental result shows that the algorithm works better than random walk algorithm.
文摘Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid assigning subjective weights.Design/methodology/approach:We applied four centrality measures(degree centrality,betweenness centrality,closeness centrality and eigenvector centrality)and authors’published papers to the scientific collaboration network.The grey relational analysis(GRA)method based on information entropy was used to measure an author’s impact in the collaboration network.The weight of each evaluation index was determined based on information entropy.The ACM SIGKDD collaboration network was selected as an example to demonstrate the practicality and effectiveness of our method.Findings:Author influence was not always positively correlated with evaluation indexes such as degree centrality and betweenness centrality.This implies that combined effects of multiple indexes should be considered in author impact analysis.The introduction of the GRA method based on information entropy can reduce the interference of human factors in the evaluation process.Research limitations:We only analyzed author influence from the perspective of scientific collaboration,but the impact of citation on author influence was ignored.Practical implications:The proposed method can be also applied to detect influential authors in bibliographic co-citation network,author co-citation network,bibliographic coupling network or author coupling network.It would help facilitate scientific collaboration and enhance scholarly communication.Originality/value:This paper proposes an analytical method of evaluating author influence in scientific collaboration networks,in which combined effects of multiple indexes are considered and the interference of human factors is reduced in the evaluation process.
基金supported by the National Basic Research Program of China(2013CB329102)the National Natural Science Foundation of China(61372120,61271019,61101119,61121001,61072057,60902051)+1 种基金the PCSIRT(IRT1049)the Beijing Higher Education Young Elite Teacher Project(YETP0473)
文摘In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 60744003, 10635040, 10532060 and 10472116, the Special Research Funds for Theoretical Physics Frontier Problems (NSFC Nos 10547004 and A0524701), the President Funding of Chinese Academy of Sciences, and the Specialized Research Fund for the Doctoral Programme of Higher Education of China.
文摘We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distribution based on our model obeys a power-law form, which is in agreement with the recently empirical evidences. In addition, our model displays the small-world effect and the hierarchical structure.
基金National Natural Science Foundation of China,No.41571151,No.41590842,No.71433008
文摘The Chinese urban system is currently experiencing a fundamental shift, as it moves from a size-based hierarchy to a network-based system. Contemporary studies of city networks have tended to focus on economic interactions without paying sufficient attention to the issue of knowledge flow. Using data on co-authored papers obtained from China Academic Journal Network Publishing Database (CAJNPD) during 2014-2016, this study explores several features of the scientific collaboration network between Chinese mainland cities. The study concludes that: (1) the spatial organization of scientific cooperation amongst Chinese cities is shifting from a jurisdiction-based hierarchical system to a networked system; and (2) several highly intra-connected city regions were found to exist in the network of knowledge, and such regions had more average internal linkages (14.21) than external linkages (8.69), and higher average internal linkage degrees (14.43) than external linkage degrees (10.43); and (3) differences existed in terms of inter-region connectivity between the Western, Eastern, and Central China regional networks (the average INCD of the three regional networks were 109.65, 95.81, and 71.88). We suggest that China should engage in the development of regional and subregional scientific centers to achieve the goal of building an innovative country. Whilst findings reveal a high degree of concentration in those networks - a characteristic which reflects the hierarchical nature of China's urban economic structure - the actual spatial distribution of city networks of knowledge flow was found to be different from that of city networks based on economic outputs or population.