期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake Viewed with Fault-Zone Trapped Waves and Scientific Drilling 被引量:9
1
作者 LI Yonggang XU Zhiqin LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期444-467,共24页
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I... This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect. 展开更多
关键词 Rupture zone rock damage structure scientific drilling fault-zone trapped waves Wenchuan Earthquake Longmen-Shan Fault
下载PDF
Ultrahigh-pressure and Retrograde Metamorphic Ages for Paleozoic Protolith of Paragneiss in the Main Drill Hole of the Chinese Continental Scientific Drilling Project(CCSD-MH),SW Sulu UHP Terrane 被引量:5
2
作者 LIU Fulai XU Zhiqin XUE Huaimin ZHOU Kaifu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期336-348,共13页
Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maob... Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragnelss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragnelss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff. 展开更多
关键词 SHRIMP U-Pb dating zircon mineral inclusions Paleozoic protolith PARAGNEISS Chinese Continental scientific drilling Project
下载PDF
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:4
3
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
Scientific Drilling-to Construct the Telescopes that Inserting to the Earth Interior 被引量:3
4
作者 ZHANG Xiaoxi ZHANG Hui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期87-88,共2页
Mankind live in the earth for countless years, but until now;people do not really understand the connotation of the Earth. We know that the earth composition including the lithosphere, the asthenosphere, mantle and co... Mankind live in the earth for countless years, but until now;people do not really understand the connotation of the Earth. We know that the earth composition including the lithosphere, the asthenosphere, mantle and core. Of course, the lithosphere supports all the life on Earth. For a long time, geoscientists trying to use all kind of methods such as geological, geophysical and geochemical methods to detect and study the earth, but the knowledge about earth are mostly indirect. Through the direct observation to the lithosphere, people can understand and recognize the plate movement of ocean and the mainland, crustal stress, earthquakes, volcanic processes, deep resources, the origins of life, global climate change and biodiversity. They are all the basis of a series of geosciences problems(Su and Yang, 2010). Geological specimens, especially the true samples from deep of the Earth, are the most directly study subjects for geologists. But the only way to access the true samples from deep of the earth is drilling. The most directly relevant evidence always originated from the deep of the earth, such as core, cuttings, fluid samples and other physical samples. Continental scientific drilling has been demonstrated which is an efficient technique for directly obtaining information from the Earth’s surface to the deep crust, and is acknowledged as ―to build a telescope inserting to the interior of the Earth‖, as well as ―a key for opening the door of the Earth‖. Over the last four decades, continental scientific drilling has achieved great success in enhancing our knowledge of the Earth, and in providing information on mineral resources, large engineering projects and global change. SinoProbe-05 is a new scientific drilling venture,which builds on the success of the Chinese Continental Scientific Drilling Project(CCSD), and is similar to the current major scientific drilling project on the Wenchuan earthquake fault. SinoProbe-05 will focus on 6 critical tectonic and mineral resource regions, including the Jinchuan Cu-Ni sulphide deposits in Gansu, the Luobusa chromite deposits in Tibet, the Tengchong volcano-thermal tectonic zone in Yunnan, the Yudu-Ganxian polymetallic deposits in South China, the Tongling polymetallic deposit and the Luzong volcanic basin and mineral deposit district in Anhui. As of the end of 2013, all of these pilot holes have been completed, all of them have achieved the desired scientific objectives. The construction of another ICDP project, Songke No.2 well, has come to an end. Current well depth is 5929 m. Drilling throughout the Cretaceous strata is just around the corner(The design well depth is 6400 m.). This will be the first complete Cretaceous stratigraphic profile in the world. The deep exploration project which will be stared soon will build a large number of different depths of scientific drilling holes. The deepest hole depth will reach to 13000 m. We believe that the construction of these scientific coring drilling holes will provide geologists with a lot of real core samples. These cores can meet the needs for different geoscience research areas. No doubt, the research results based on these cores will promote China’s geological science research to a new height, of course;will also contribute to the progress of the world’s earth science. This is also a good opportunity to promote China’s drilling technology. So, we know that no advanced drilling technology, no enough high quality samples from the deep of the Earth, the in-depth studies for geosciences will be restricted of course(Zhang et al., 2013). 展开更多
关键词 scientific drilling drilling technology true samples Telescopes inserting to the earth
下载PDF
A Study on the Classification and Well-Logging Identification of Eclogite in the Main Hole of Chinese Continental Scientific Drilling Project 被引量:2
5
作者 景建恩 魏文博 +2 位作者 金胜 叶高峰 邓明 《Journal of China University of Geosciences》 SCIE CSCD 2007年第4期357-365,共9页
Eclogite, one of the important lithologies in the main hole of the Chinese Continental Scientific Drilling (CCSD) Project, exists above the depth of 3 245 m and has distinctive responses of gamma-ray, compensating d... Eclogite, one of the important lithologies in the main hole of the Chinese Continental Scientific Drilling (CCSD) Project, exists above the depth of 3 245 m and has distinctive responses of gamma-ray, compensating density and neutron well-logging, and so on. In this study, according to the diversities of minerals and chemical components and well-logging responses, edogites are classified from three aspects of origin, content of oxygen, and sub-mineral. We studied the logging identification method for eclogite sub-classes based on multi-element statistics and reconstructed 11 kinds of eclogite. As a result, eclogites can be divided into 6 types using well logs. In the light of this recognition, the eclogite in the main hole is divided into 20 sections, and the distribution characters of all sub-classes of eclogite are analyzed, which will provide important data for geological research of CCSD. 展开更多
关键词 Chinese Continental scientific drilling (CCSD) ultrahigh pressure metamorphic rock ECLOGITE well-logging lithology identification classification.
下载PDF
IMPLEMENTING CONTINENTAL SCIENTIFIC DRILLING IN CHINA
6
《Bulletin of the Chinese Academy of Sciences》 1997年第2期144-144,共1页
Implementing continental scientific drilling in China is of great scientific significance, and is an inspiring major scientific project for promoting the rapid development of the economy and society of China. It is a ... Implementing continental scientific drilling in China is of great scientific significance, and is an inspiring major scientific project for promoting the rapid development of the economy and society of China. It is a prerequisite for earth science research to obtain major progress, and can bring along the development of other branches of science, engineering and technology, and to form high-tech industries. Moreover, it is also an important basis for personnel training, and one of the important indicators of S&T actual strength of a country. From 1970, 14 countries have implemented continental scientific drilling. Practice shows that there is a difference between continental 展开更多
关键词 IMPLEMENTING CONTINENTAL scientific drilling IN CHINA
下载PDF
Late Jurassic to early Cretaceous magnetostratigraphy of scientific drilling core LK-1 in the Lingshan Island of Riqingwei Basin,eastern China 被引量:3
7
作者 Yanjun CHENG Zhiping WU +4 位作者 Xiaoyu LIU Yaoqi ZHOU Yining DAI Tongjie ZHANG Tengfei ZHOU 《Science China Earth Sciences》 SCIE EI CSCD 2022年第4期742-758,共17页
The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcr... The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcrops that are considered to be related to the newly discovered Riqingwei Basin.This basin has been the focus of extensive study due to its continuous Cretaceous rock sequence,geological location and petroleum resource potential.However,the lack of a consolidated chronology for the strata has precluded a better understanding of stratigraphy,tectonic evolution and resource potential of the Riqingwei Basin.Here,we present the results of a new magnetostratigraphic study of the continental scientific drilling borehole LK-1,which is located on Lingshan Island,offshore Shandong province,eastern China.The goals of this study are to(1)refine the Late Jurassic to Early Cretaceous chronostratigraphic framework of the Riqingwei Basin,and(2)investigate the location of the J/K boundary in the Borehole Core LK-1.The observed patterns of the paleomagnetic polarity zone in the LK-1 borehole correlate well with the geomagnetic polarity time scale(GPTS),and the continuous magnetostratigraphy profile defined in this core indicates an age ranging from 146.5 to 125.8 Ma for the samples interval.The sediment accumulation rates(SAR)of LK-1 show one period of high SAR(~10.5 cm kyr^(-1))at 135.3–130.6 Ma and two periods of low SAR(~4.8 and~2.2 cm kyr^(-1))at145.7–135.3 and 130.6–125.8 Ma,respectively.In addition,the magnetostratigraphic results suggest that the Jurassic-Cretaceous(J/K)boundary of the LK-1 is located within the magnetozone N21.2 n(~1254 m).This comprehensive geochronologic framework provides a good correlation of the marine Upper Jurassic to Lower Cretaceous strata in the Riqingwei Basin to other marine strata and continental sequences,in addition to providing a foundation for the study of the structural evolution of eastern China. 展开更多
关键词 MAGNETOSTRATIGRAPHY Continental scientific drilling borehole LK-1 J/K boundary Late Jurassic to Early Cretaceous Riqingwei Basin
原文传递
Deep gold mineralization features of Jiaojia metallogenic belt,Jiaodong gold Province:Based on the breakthrough of 3000 m exploration drilling 被引量:2
8
作者 Xue-feng Yu Da-peng Li +7 位作者 Jing-xiang Tian De-ping Yang Wei Shan Ke Geng Yu-xin Xiong Nai-jie Chi Peng-fei Wei Peng-rui Liu 《China Geology》 2020年第3期385-401,共17页
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ... Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation. 展开更多
关键词 Au deposit Alteration rock type Fracture zone 3000 m scientific drilling Deep mineral exploration engineering Jiaojia metallogenic belt Shandong Province China
下载PDF
The accurate location of the injection- induced microearthquakes in German Continental Deep Drilling Program 被引量:1
9
作者 TU Yi-min(涂毅敏) +1 位作者 CHEN Yun-tai(陈运泰) 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第6期616-627,共12页
From August 21, 2000 to October 20, 2000,a fluid injection-induced seismicity experiment has been carried out in the KTB (German Continental Deep Drilling Program). The KTB seismic network recorded more than 2 700 eve... From August 21, 2000 to October 20, 2000,a fluid injection-induced seismicity experiment has been carried out in the KTB (German Continental Deep Drilling Program). The KTB seismic network recorded more than 2 700 events. Among them 237 events were of high signal-to-noise ratio, and were processed and accurately located. When the events were located, non KTB events were weeded out by Wadatis method. The standard deviation, mean and median were obtained by Jackknife's technique, and finally the events were accurately located by Gei-gers method so that the mean error is about 0.1 km. No earthquakes with focal depth greater than 9.3 km, which is nearly at the bottom of the hole, were detected. One of the explanation is that at such depths the stress levels may not close to the rocks frictional strength so that failure could not be induced by the relatively small perturbation in pore pressure. Or at these depths there may be no permeable, well-oriented faults. This depth may be in close proximity to the bottom of the hole to the brittle-ductile transition, even in this relatively stable interior of the in-teraplate. This phenomenon is explained by the experimental results and geothermal data from the superdeep bore-hole. 展开更多
关键词 scientific deep drilling fluid-injection induced seismicity earthquake location Jackknife method brittle-ductile transition
下载PDF
Acoustic Borehole Images for Fracture Extraction and Analysis in Second Pre-pilot Drillhole of CCSD 被引量:6
10
作者 ZouChangchun ShiGe PanLingzhi 《Journal of China University of Geosciences》 SCIE CSCD 2004年第1期123-127,共5页
Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot... Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°. Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120° in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole. 展开更多
关键词 Chinese Continental scientific drilling (CCSD) acoustic borehole image FRACTURE analysis.
下载PDF
Progress of Deep Geological Survey Project under the China Geological Survey 被引量:3
11
作者 Qing-tian Lü Jia-yong Yan +3 位作者 Xuan-hua Chen He-sheng Hou Wen-shi Wang Yu-le Hu 《China Geology》 2020年第1期153-172,共20页
Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankin... Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankind's basic need to obtain resources and guarantee economic and social development.The first phase of deep earth exploration of China(SinoProbe)was carried out from 2008 to 2016 and tremendous results were achieved.In 2016,the China Geological Survey launched a Deep Geological Survey Project(also referred to as the Project)to continuously explore the deep Earth.Focusing on the national energy resources strategy,the Belt and Road Initiative,and major basic issues of the geological survey,the Project was carried out in Songliao Basin(an important energy base in China)and major geological boundaries and tectonic units including Qilian Mountains-Tianshan Mountains and Qinzhou-Hangzhou juncture belt.The purpose of it is to reveal the process,structure,and forming patterns of the deep ore deposits and petroleum reservoirs,clarify the evolutionary pattern and controlling factors of Mesozoic environmental climate,and discover deep fine structures of key orogens,basins,and mountains by comprehensive geophysical exploration and scientific drilling.Great achievements have been obtained after more than three years of efforts,including a cumulative 1552 km of deep seismic reflection profiles and magnetotelluric profiles,an ultra-deep continental scientific crilling well,a scientific drilling pilot hole,and a magnetotelluric array and a portable broadband seismic array,both of which cover South China.Moreover,significant progress has been made in ultra-deep drilling technology,deep oil and gas discovery in Songliao Basin,and basic geological issues of Qilian Orogen and Qinzhou-Hangzhou juncture belt in South China,greatly accelerating the deep earth exploration in China and further consolidating China's position as a power in deep earth exploration. 展开更多
关键词 Deep geological survey Deep oil and gas discovery Ultra-deep scientific drilling technology Songke No.2 well Qilian Mountains-Tianshan Mountains Qinzhou-Hangzhou juncture belt Songliao Basin China
下载PDF
Global case studies of soft-sediment deformation structures(SSDS): Definitions,classifications, advances, origins, and problems 被引量:14
12
作者 G.Shanmugam 《Journal of Palaeogeography》 SCIE CSCD 2017年第4期251-320,共70页
Soft-sediment deformation structures(SSDS)have been the focus of attention for over 150 years.Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase"SSDS".As a ... Soft-sediment deformation structures(SSDS)have been the focus of attention for over 150 years.Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase"SSDS".As a consequence,a plethora of at least 120 different types of SSDS(e.g.,convolute bedding,slump folds,load casts,dish-and-pillar structures,pockmarks,raindrop imprints,explosive sandegravel craters,clastic injections,crushed and deformed stromatolites,etc.)have been recognized in strata ranging in age from Paleoproterozoic to the present time.The two factors that control the origin of SSDS are prelithification deformation and liquidization.A sedimentological compendium of 140 case studies of SSDS worldwide,which include 30 case studies of scientific drilling at sea(DSDP/ODP/IODP),published during a period between 1863and 2017,has yielded at least 31 different origins.Earthquakes have remained the single most dominant cause of SSDS because of the prevailing"seismite"mindset.Selected advances on SSDS research are:(1)an experimental study that revealed a quantitative similarity between raindrop-impact cratering and asteroid-impact cratering;(2)IODP Expedition 308 in the Gulf of Mexico that documented extensive lateral extent(〉12 km)of mass-transport deposits(MTD)with SSDS that are unrelated to earthquakes;(3)contributions on documentation of pockmarks,on recognition of new structures,and on large-scale sediment deformation on Mars.Problems that hinder our understanding of SSDS still remain.They are:(1)vague definitions of the phrase"soft-sediment deformation";(2)complex factors that govern the origin of SSDS;(3)omission of vital empirical data in documenting vertical changes in facies using measured sedimentological logs;(4)difficulties in distinguishing depositional processes from tectonic events;(5)a model-driven interpretation of SSDS(i.e.,earthquake being the singular cause);(6)routine application of the genetic term"seismites"to the"SSDS",thus undermining the basic tenet of process sedimentology(i.e.,separation of interpretation from observation);(7)the absence of objective criteria to differentiate 21 triggering mechanisms of liquefaction and related SSDS;(8)application of the process concept"high-density turbidity currents",a process that has never been documented in modern oceans;(9)application of the process concept"sediment creep"with a velocity connotation that cannot be inferred from the ancient record;(10)classification of pockmarks,which are hollow spaces(i.e.,without sediments)as SSDS,with their problematic origins by fluid expulsion,sediment degassing,fish activity,etc.;(11)application of the Earth's climate-change model;and most importantly,(12)an arbitrary distinction between depositional process and sediment deformation.Despite a profusion of literature on SSDS,our understanding of their origin remains muddled.A solution to the chronic SSDS problem is to utilize the robust core dataset from scientific drilling at sea(DSDP/ODP/IODP)with a constrained definition of SSDS. 展开更多
关键词 Soft-sediment deformation structures(SSDS) Prelithification deformation Liquidization Pockmarks Impact cratering scientific drilling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部