Due to its outstanding ability in processing large quantity and high-dimensional data,machine learning models have been used in many cases,such as pattern recognition,classification,spam filtering,data mining and fore...Due to its outstanding ability in processing large quantity and high-dimensional data,machine learning models have been used in many cases,such as pattern recognition,classification,spam filtering,data mining and forecasting.As an outstanding machine learning algorithm,K-Nearest Neighbor(KNN)has been widely used in different situations,yet in selecting qualified applicants for winning a funding is almost new.The major problem lies in how to accurately determine the importance of attributes.In this paper,we propose a Feature-weighted Gradient Decent K-Nearest Neighbor(FGDKNN)method to classify funding applicants in to two types:approved ones or not approved ones.The FGDKNN is based on a gradient decent learning algorithm to update weight.It updates the weight of labels by minimizing error ratio iteratively,so that the importance of attributes can be described better.We investigate the performance of FGDKNN with Beijing Innofund.The results show that FGDKNN performs about 23%,20%,18%,15%better than KNN,SVM,DT and ANN,respectively.Moreover,the FGDKNN has fast convergence time under different training scales,and has good performance under different settings.展开更多
The researcher network that appeared in research projects funded by the Japanese government was analyzed. Several static and dynamic network analysis methods were applied to the data for 20 years to explore the fine s...The researcher network that appeared in research projects funded by the Japanese government was analyzed. Several static and dynamic network analysis methods were applied to the data for 20 years to explore the fine structure of the researcher’s network for grants. Our analysis shows that the long-term trend of researchers’ group sizes has become smaller, particularly rapidly decreasing in recent years. Some findings on researcher behavior in joining a project have also been reported.展开更多
基金J.Yao would like to thank the support of Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation[QCXM201910]Scientific Research Setup Fund of Hainan University[KYQD(ZR)1837]+1 种基金the National Natural Science Foundation of China[61802092]G.Hu would like to thank the support of Fundamental Research Project of Shenzhen Municipality[JCYJ20170817115335418].
文摘Due to its outstanding ability in processing large quantity and high-dimensional data,machine learning models have been used in many cases,such as pattern recognition,classification,spam filtering,data mining and forecasting.As an outstanding machine learning algorithm,K-Nearest Neighbor(KNN)has been widely used in different situations,yet in selecting qualified applicants for winning a funding is almost new.The major problem lies in how to accurately determine the importance of attributes.In this paper,we propose a Feature-weighted Gradient Decent K-Nearest Neighbor(FGDKNN)method to classify funding applicants in to two types:approved ones or not approved ones.The FGDKNN is based on a gradient decent learning algorithm to update weight.It updates the weight of labels by minimizing error ratio iteratively,so that the importance of attributes can be described better.We investigate the performance of FGDKNN with Beijing Innofund.The results show that FGDKNN performs about 23%,20%,18%,15%better than KNN,SVM,DT and ANN,respectively.Moreover,the FGDKNN has fast convergence time under different training scales,and has good performance under different settings.
文摘The researcher network that appeared in research projects funded by the Japanese government was analyzed. Several static and dynamic network analysis methods were applied to the data for 20 years to explore the fine structure of the researcher’s network for grants. Our analysis shows that the long-term trend of researchers’ group sizes has become smaller, particularly rapidly decreasing in recent years. Some findings on researcher behavior in joining a project have also been reported.