针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)...针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)进行故障检测,判断PRSM是否处于正常状态。首先,在PRSM试验台上采集正常状态、润滑失效和滚柱一侧断齿3种状态的振动信号;其次,对数据进行归一化并通过窗口裁剪的方式进行数据增强,以扩充样本数量;然后,通过小波包变换对信号进行分解,以初步提取数据的特征;最后,利用deep SVDD实现PRSM故障检测,同时与单分类支持向量机(one-class support vector machine,OCSVM)和支持向量数据描述(support vector data description,SVDD)方法进行对比,结果表明,deep SVDD具有更好的分类能力和较高的训练效率,较为适合实现PRSM故障检测。展开更多
文摘针对行星滚柱丝杠(planetary roller screw mechanism,PRSM)在实际应用中故障机理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型——深度支持向量数据描述(deep support vector data description,deep SVDD)进行故障检测,判断PRSM是否处于正常状态。首先,在PRSM试验台上采集正常状态、润滑失效和滚柱一侧断齿3种状态的振动信号;其次,对数据进行归一化并通过窗口裁剪的方式进行数据增强,以扩充样本数量;然后,通过小波包变换对信号进行分解,以初步提取数据的特征;最后,利用deep SVDD实现PRSM故障检测,同时与单分类支持向量机(one-class support vector machine,OCSVM)和支持向量数据描述(support vector data description,SVDD)方法进行对比,结果表明,deep SVDD具有更好的分类能力和较高的训练效率,较为适合实现PRSM故障检测。