A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effec...A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.展开更多
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to change...Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation background. Over China, the LGM climate responses to different mechanisms in order of strength from strong to weak are, the large-scale circulation pattern, sea- land distribution, vegetation, CO2 concentration, and earth orbital parameters.展开更多
The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers th...The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6°)? covering the East Asian marginal seas and coarse grid (3°) covering the rest part of the global oceans. The result shows that the China 1985 Na-tional Altitude Datum is 24.7 cm above the mean sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of model results is sufficient for practical application. Based on the model results, the mean sea surface heights for the展开更多
基金supported jointly by the "National Key Developing Programme for Basic Science" project 2006CB400500China Postdoctoral Science Foundation 20070410133National Natural Science Foundation of China General Program 40905042, and 40675042
文摘A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.
基金the National Natural Science Foundation of China under Nos.40231011,90102055,and 40233034
文摘Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation background. Over China, the LGM climate responses to different mechanisms in order of strength from strong to weak are, the large-scale circulation pattern, sea- land distribution, vegetation, CO2 concentration, and earth orbital parameters.
基金This work was supported by the Major State Basic Research Program (Grant No. G1999043808) the National Natural Science Foundation of China (Grant Nos. 49876010 and 40076004) the Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-
文摘The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6°)? covering the East Asian marginal seas and coarse grid (3°) covering the rest part of the global oceans. The result shows that the China 1985 Na-tional Altitude Datum is 24.7 cm above the mean sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of model results is sufficient for practical application. Based on the model results, the mean sea surface heights for the