In the present study, a severe squall line(SL) was analyzed by using intensive observational surface data and radar monitoring products. In this process, mesoscale convergence lines, such as the sea breeze front(SBF),...In the present study, a severe squall line(SL) was analyzed by using intensive observational surface data and radar monitoring products. In this process, mesoscale convergence lines, such as the sea breeze front(SBF), gust front and dry line, served as the main triggering and strengthening factors. The transition from convection triggering to the formation of the initial shape was mainly affected by the convergence line of the SBF, which combined with thermal convection to form the main parts of the SL. In the later stage, the convergence line of the gust front merged with other convergence lines to form a series of strong convective cells. The SBF had good indicative significance in terms of severe convective weather warnings. The suitable conditions of heat, water vapor and vertical wind shear on the Shandong Peninsula were beneficial to the maintenance of the SL. Before SL occurrence, tropopause folding strengthened, which consequently enhanced the baroclinic property in the middle and upper troposphere. The high sensible heat flux at the surface easily produced a positive potential vorticity anomaly in the low layer, resulting in convective instability, which was conducive to the maintenance of these processes. In the system, when precipitation particles passed through the unsaturated air layer, they underwent strong evaporation, melting or sublimation, and the cooling effect formed negative buoyancy, which accelerated the sinking of the air and promoted the sustained development of the surface gale. Together with the development of lowlevel mesocyclones, the air pressure decreased rapidly, which was conducive to gale initiation.展开更多
Using data from automatic surface weather stations, buoys, lidar and Doppler, the diurnal variation and the three-dimensional structure of the sea breezes near the sailing sites of the Good Luck Beijing- 2006 Qingdao ...Using data from automatic surface weather stations, buoys, lidar and Doppler, the diurnal variation and the three-dimensional structure of the sea breezes near the sailing sites of the Good Luck Beijing- 2006 Qingdao International Regatta from 18 to 31 August 2006 are analyzed. Results show that excluding rainy days and days affected by typhoon, the sea breezes occur nearly every day during this period. When Qingdao is located at the edge of the subtropical high at 500 hPa, the sea breeze is usually stronger, around 3-4 m s^-1. It starts at around 1100 to 1300 LST and lasts about 6 hours. The direction of the sea breeze tends to be southeasterly. When Qingdao is under the control of the subtropical high, the sea breeze is usually weaker, less than 2.5 m s^-1 throughout the day, and begins later, between 1300 and 1500 LST. In this case, the direction of the sea breeze is variable from easterly to southeasterly. Most sea breezes in Qingdao are very shallow, up to 300 meters deep. Strong sea breezes can reach 1.5 km in depth and can push as far as 100 km inland. If the Huanghai sea breeze moves inland and meets the sea breeze of the Jiaozhou Bay in the western part of Qingdao, the sea breeze will strengthen and form three boundaries due to the interaction of the two sea breezes.展开更多
The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesos...The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesoscale community Weather Research and Forecasting(WRF)model in one-way nested domains at different horizontal resolutions.Results are compared with observations to examine the accuracy of model-simulated SB convection and factors that influence SB CI within the simulation.It is found that the WRF model can realistically reproduce the observed SB CI.Differences are found in the timing,location,and intensity of the convective cells at different domains with various spatial resolutions.With increasing spatial resolution,the simulation improvements are manifested mainly in the timing of CI and the orientation of the convection after the sea breeze front(SBF)merger into the squall line over the peninsula.Diagnoses indicate that accurate representation of geophysical variables(e.g.,coastline and bay shape,small lakes measuring 10-30 km2),better resolved by the high resolution,play a significant role in improving the simulations.The geophysical variables,together with the high resolution,impact the location and timing of SB CI due to changes in low-level atmospheric convergence and surface sensible heating.More importantly,they enable Florida lakes(30 km2 and larger)to produce noticeable lake breezes(LBs)that collide with the SBFs to produce CI.Furthermore,they also help the model reproduce a stronger convective squall line caused by merging SBs,leading to more accurate locations of postfrontal convective systems.展开更多
To examine the correlation between the sizes of sea breeze fronts and pollutants under the influence of synoptic fields, a numerical simulation was conducted in the southeast coastal area of the Korean Peninsula, wher...To examine the correlation between the sizes of sea breeze fronts and pollutants under the influence of synoptic fields, a numerical simulation was conducted in the southeast coastal area of the Korean Peninsula, where relatively high concentrations of pollutants occur because of the presence of various kinds of industrial developments. Sea breeze and sea breeze front days during the period 2005 09 were identified using wind profiler data and, according to the results, the number of days were 72 and 53, respectively. When synoptic forcing was weak, sea breeze fronts moved fast both in horizontal fields and in terms of wind velocity, while in the case of strong synoptic forcing, sea breeze fronts remained at the coast or moved slowly due to strong opposing flows. In this case, the sea breeze front development function and horizontal potential temperature difference were larger than with weak synoptic forcing. The ozone concentration that moves together with sea breeze fronts was also formed along the frontal surfaces. Ozone advection and diffusion in the case of strong synoptic forcing was suppressed at the frontal surface and the concentration gradient was large. The vertical distribution of ozone was very low due to the Thermal Internal Boundary Layer (TIBL) being low.展开更多
This work discusses issues related to the impact of urbanization on the microphysical processes of precipitating systems associated with synoptic, mesoscale, and local scale systems. Among the issues addressed is the ...This work discusses issues related to the impact of urbanization on the microphysical processes of precipitating systems associated with synoptic, mesoscale, and local scale systems. Among the issues addressed is the impact of urban heat <span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">island (UHI) in S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center and urban densification (UD) in the</span><span> </span><span style="font-family:Verdana;">Metropolitan Area of S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo (MASP) on the microphysical, dynamic, and</span><span style="font-family:Verdana;"> thermodynamic properties and distribution of precipitation and heavier rainfall from sea-breeze (SB) e cold-front (CF) combined during their space-time evolutions. For this purpose, it used four components: classification of hydrometeors with fuzzy logic, calculation of the raindrop diameters, an estimate of liquid water mass and ice mass from polarimetric-variables measured with dual-pola- rization X-band meteorological radar. The results indicated that urban densification (UD) and heat island (UHI) of the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center impact the formation of precipitation, liquid water mass, and ice mass, depth, and duration of </span><span style="font-family:Verdana;">a thunderstorm. It was also observed the asymmetric configuration of the th</span><span style="font-family:Verdana;">understorm is induced by the strong convergence in the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center, and this strong convergence is induced by the intense heat island (UHI) in the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center. Was also observed that this event that is formed in the Metropolitan Area of S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span>o Paulo (MASP) depends on microphysical processes of mixed-phase of the cloud (water and ice) above the 0<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span>C isotherm for the production of intense rain and cold pool at the surface. These important microphysical processes within long-lasting secondary convective cells over the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center should be taken into account on convective parameterization schemes as well as the associated cold pool dynamics.</span></span></span></span>展开更多
[Objective] The aim was to study the sea breeze front storm and its composite analysis in Beibu Gulf. [Method] By dint of routine observation data, ground automatic meteorology data and European numerical mode grid da...[Objective] The aim was to study the sea breeze front storm and its composite analysis in Beibu Gulf. [Method] By dint of routine observation data, ground automatic meteorology data and European numerical mode grid data, rainstorm caused by sea breeze in Guangxi during 1990 and 2007 and the strong convection triggered by sea breeze on June 5 in 2008 were expounded. The main characteristics of the configuration of circulation in the low and high latitude of breeze front of middle scale were summarized. [Result] Sea breeze front storm system was an important middle scale sea breeze front system that triggered storm in the Beibu Gulf. Sea breeze in Beibu Gulf occurred most easily during the southwest monsoon eruption period. Case study pointed out that after sunrise, the continental and island temperature in Beibu Gulf turned from warm-ocean-cold-island into warm-island-cold-ocean. The southerly airstream of high temperature and high humidity met with the relatively low temperature and dry northerly airstream in Beibu Gulf, and triggered vertical circulation and stimulated ground middle scale sea breeze front system. Composite analysis referred to the circulation characteristics of the ocean and continental temperature in Beibu Gulf. The upper air of south China was in strong divergence center. The air pressure was high in the east and low in the west. Beibu Gulf was in the southerly torrent belt in front of the trough and after the latitude in cyclonic circulation convergence area. The strata unstable structure of the divergence in the upper air and the convergence in the lower layer and the 'pumping effect' provided upward dynamics for the ocean circulation development. The southerly brought rich water vapor to the Beibu Gulf, which was conductive to the formation of strong convective cloud system in the lower layer and the generation of precipitation. [Conclusion] The research provided references for the study on the characteristics of middle scale convective system.展开更多
The study presented herein is the analysis of Sodar based instrument measurements of air temperature, dew point, and vertical wind speed and direction, recorded at two South Carolina sites, Waties Island in North Myrt...The study presented herein is the analysis of Sodar based instrument measurements of air temperature, dew point, and vertical wind speed and direction, recorded at two South Carolina sites, Waties Island in North Myrtle Beach and in Sumter, and at three atmospheric ground stations. Two of the ground stations are National Weather Service stations near the Sodars and one is a Coastal Carolina University Sea-Econet, as a part of the National Oceanic & Atmospheric Administration, MESO program, weather-sensor site on the Coastal Carolina University campus in Conway South Carolina. Objectives of this study are to establish specific values of winds, land and sea temperatures, precipitation and dew points associated with the changes induced by passages of the Sea Breeze Front, and to examine differences in the station-to-station incarnation of the Sea Breeze circulation. Variability from station to station in the nature and timing of Sea Breeze Front passage is found to be a function of relative proximity to the coast with Sea Breeze Front passage occurring earliest at the North Myrtle Beach site (the station at the coast), then at Sumter (~100 km inland) and finally Aiken at >100 km inland. Satellite based estimates of the percentages of onshore penetration distances from the coast are depicted. Wind vectors and air temperatures associated with onsets and passages of the Sea Breeze display robust wind fields directed onshore perpendicular to the coastline. Kinematical descriptors of the Sea Breeze wind particle motions are presented and display coherent stable elliptical motions during the late summer to early fall but are absent during the winter.展开更多
A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes...A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes before and after the SBF passed through two meteorological towers in the urban areas of Tianjin and Beijing,respectively.Significant changes in temperature,humidity,winds,CO_(2),and aerosol concentrations were observed as the SBF passed.Differences in these changes at the two towers mainly resulted from their distances from the ocean,boundary layer conditions,and background turbulences.As the SBF approached,a strong updraft appeared in the boundary layer,carrying near-surface aerosols aloft and forming the SBF head.This was followed by a broad downdraft,which destroyed the near-surface inversion layer and temporarily increased the surface air temperature at night.The feeder flow after the thermodynamic front was characterized by low-level jets horizontally,and downdrafts and occasional updrafts vertically.Turbulence increased significantly during the SBF’s passage,causing an increase in the standard deviation of wind components in speed.The increase in turbulence was more pronounced in a stable boundary layer compared to that in a convective boundary layer.The passage of the SBF generated more mechanical turbulences,as indicated by increased friction velocity and turbulent kinetic energy(TKE).The shear term in the TKE budget equation increased more significantly than the buoyancy term.The atmosphere shifted to a forced convective state after the SBF’s passage,with near isotropic turbulences and uniform mixing and diffusion of aerosols.Sensible heat fluxes(latent heat and CO_(2)fluxes)showed positive(negative)peaks after the SBF’s passage,primarily caused by horizontal and vertical transport of heat(water vapor and CO_(2))during its passage.This study enhances understanding of boundary layer changes,turbulences,and fluxes during the passage of SBFs over urban areas.展开更多
In this paper the seasonal variation and structural characteristics of the sea/ land breeze in the northern coastal area of' Shandong Peninsula are studied in two ways: one is the analysis of the observed wind dat...In this paper the seasonal variation and structural characteristics of the sea/ land breeze in the northern coastal area of' Shandong Peninsula are studied in two ways: one is the analysis of the observed wind data, and the other is numerical simulation and experiments. Firstly, the hour to hour wind data through the year 1984 at Longkou Meteorological Station and Yantai Oceanographic Station are analysed through energy spectra and hodograph. It is revealed from the analysed results that the effects of the sea/ land breeze in the area are notable in spring, summer and fall, especially in May. However, in winter the effects of sea / land breeze are not obvious. because the cold noitherly is prevailing. Secondly, a two-dimensional non- linear model of primitive equations is used to study the sea / land breeze circulation in May in the area. The results of numerical simulation consist basically with the analysed results of the observed sea / land breeze. A reasonable theoretical structure of the sea / land breeze circulation is displayed, and a new undeerslanding of the developmental mechanism of land breeze circulation in that area is obtained. Lastly, numerical experiments about the effects of large scale wind and temperature fields upon the sea / land breeze circulation are performed.展开更多
This study investigates the roles of the boreal summer intraseasonal oscillation(BSISO)in the diurnal rainfall cycle over Hainan Island during the warm season(April-September)using 20-year satellite-based precipitatio...This study investigates the roles of the boreal summer intraseasonal oscillation(BSISO)in the diurnal rainfall cycle over Hainan Island during the warm season(April-September)using 20-year satellite-based precipitation,ERA5 and the outgoing longwave radiation data with the phase composite analysis method.Results show that the spatial distributions of the hourly rainfall anomaly significantly change under the BSISO phases 1-8 while no clear variations are found on the daily and anomaly daily area-averaged rainfall over the island.During the BSISO phase 1,the rainfall anomaly distinctly increases in the morning over the southwest and late afternoon over the northeast of the island,while suppressed convection occurs in the early afternoon over the southwest area.Under this circumstance,strong low-level westerly winds bring abundant moisture into the island,which helps initiate the nocturnal-morning convection over the south coastal area,and drives the convergence region of sea breeze fronts to concentrate into the northwest.Opposite to Phase 1,an almost completely reversed diurnal cycle of rainfall anomaly is found in Phase 5,whereas a positive anomalous rainfall peak is observed in the early afternoon over the center while negative peaks are found in the morning and late afternoon over the southwest and northeast,owing to a strong low-level northeasterly anomaly flow,which causes relatively low moisture and enlarges a sea-breeze convergence area over the island.During Phase 8,strongest moisture is found over the island all through the day,which tends to produce highest rainfall in the afternoon with enhanced anomalous northerly.These results further indicate that multiscale interactions between the large-scale circulations and local land-sea breeze circulations play important roles in modulating diurnal precipitation cycles over the tropical island.展开更多
Methane(CH_(4))and carbon dioxide(CO_(2))are the two most important greenhouse gases(GHGs).To examine the variation characteristics of CH_(4)and CO_(2)in the coastal South China Sea,atmospheric CH_(4)and CO_(2)measure...Methane(CH_(4))and carbon dioxide(CO_(2))are the two most important greenhouse gases(GHGs).To examine the variation characteristics of CH_(4)and CO_(2)in the coastal South China Sea,atmospheric CH_(4)and CO_(2)measurements were performed in Bohe(BH),Guangdong,China,in summer 2021.By using an adaptive data analysis method,the diurnal patterns of CH_(4)and CO_(2)were clearly extracted and analysed in relation to the sea breeze(SB)and land breeze(LB),respectively.The average concentrations of CH_(4)and CO_(2)were 1876.91±31.13 ppb and 407.99±4.24 ppm during SB,and 1988.12±109.92 ppb and 421.54±14.89 ppm during LB,respectively.The values of CH_(4)and CO_(2)during SB basically coincided with the values and trends of marine background sites,showing that the BH station could serve as an ideal site for background GHG monitoring and dynamic analysis.The extracted diurnal variations in CH_(4)and CO_(2)showed sunrise high and sunset low patterns(with peaks at 5:00–7:00)during LB but mid-morning high and evening low patterns(with peaks at 9:00)during SB.The diurnal amplitude changes in both CH_(4)and CO_(2)during LB were almost two to three times those during SB.Wind direction significantly modulated the diurnal variations in CH_(4)and CO_(2).The results in this study provide a new way to examine the variations in GHGs on different timescales and can also help us gain a better understanding of GHG sources and distributions in the South China Sea.展开更多
Long-term climate changes related with urbanization in Tokyo, Japan, and recent temperature and heavy rainfall distribution in the Tokyo metropolitan area are reviewed. A relatively high temperature increase in annual...Long-term climate changes related with urbanization in Tokyo, Japan, and recent temperature and heavy rainfall distribution in the Tokyo metropolitan area are reviewed. A relatively high temperature increase in annual mean temperature at the rate of 3.0°C/century was detected in Tokyo for the period 1901–2015. Some observational evidence showed the existence of both thermal and mechanical effects of urbanization on recent heavy rainfall occurrences, and modeling studies also support precipitation enhancement. Urban influences were recognized in other climatological elements, such as number of fog days, relative humidity, and wind circulation.展开更多
The thermal internal boundary layer(TIBL) is associated with coastal pollution dispersion,which can result in high concentrations of air pollutants near the surface of the Earth. In this study, boundary layer height...The thermal internal boundary layer(TIBL) is associated with coastal pollution dispersion,which can result in high concentrations of air pollutants near the surface of the Earth. In this study, boundary layer height data which were obtained using a ceilometer were used to assess the effect of the TIBL on atmospheric pollutants in Qinhuangdao, a coastal city in North China.A TIBL formed on 33% of summer days. When a TIBL formed, the sunshine duration was 2.4 hr longer, the wind speed was higher, the wind direction reflected a typical sea breeze, and the boundary layer height was lower from 9:00 LT to 20:00 LT compared to days without a TIBL. If no TIBL formed, the average concentrations of PM2.5 and PM10 decreased with increasing boundary layer height. However, when a TIBL was observed, the average concentrations of PM2.5 and PM10 increased with increasing boundary layer height. Because the air from the sea is clean, PM2.5 and PM10 concentrations reached minimums in the daytime at 16:00 LT. After16:00 LT, the PM2.5 and PM10 concentrations increased rapidly on days when a TIBL formed,which indicated that the TIBL leads to the rapid accumulation of atmospheric pollutants in the evening. Therefore, the maximum concentrations of particulate matters were larger when a TIBL formed compared to when no TIBL was present during the night. These results indicate that it is suitable for outdoor activities in the daytime on days with a TIBL in coastal cities.展开更多
By using the model developed in Part Ⅰ of the sister papers,simulations of severe storm,winter airflow and snowfall over a mountain,as well as mountain-valley winds and sea breeze are performed.Different functions of...By using the model developed in Part Ⅰ of the sister papers,simulations of severe storm,winter airflow and snowfall over a mountain,as well as mountain-valley winds and sea breeze are performed.Different functions of the model are verified through the computation and special emphasis is put on some important properties of the meso-(β-γ) systems frequently occurring.The simulation results of the cases are agreeable to field observations,conceptual models,and pre- vious numerical studies.It is shown that the model is applicable for the researches and prediction of various local and/or regional weather processes,and capable of describing their macro- and micro-structures,influences of orographic and underlying-surface forcing,and interaction between meso-β and meso-γ scales.In addition,the evolutional characteristics and mechanisms of the modeled processes are also analyzed.展开更多
Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achie...Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height(PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers(EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2–2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution.The intensity of the sea–land and mountain–valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants,which is strongly affected by the local atmospheric circulations and the distribution of urban areas.展开更多
基金Natural Science Foundation of Shandong Province (ZR2021MD062, ZR2021MD010, ZR2023MD118)National Natural Science Foundation of China (42275001)+2 种基金Shandong Meteorological Bureau Innovation Team Project (SDCXTD2023-1)Huaihe River Meteorology Open Research Fund (HRM201807)Key Special Project of Qingdao Meteorological Bureau (2023qdqxz02)。
文摘In the present study, a severe squall line(SL) was analyzed by using intensive observational surface data and radar monitoring products. In this process, mesoscale convergence lines, such as the sea breeze front(SBF), gust front and dry line, served as the main triggering and strengthening factors. The transition from convection triggering to the formation of the initial shape was mainly affected by the convergence line of the SBF, which combined with thermal convection to form the main parts of the SL. In the later stage, the convergence line of the gust front merged with other convergence lines to form a series of strong convective cells. The SBF had good indicative significance in terms of severe convective weather warnings. The suitable conditions of heat, water vapor and vertical wind shear on the Shandong Peninsula were beneficial to the maintenance of the SL. Before SL occurrence, tropopause folding strengthened, which consequently enhanced the baroclinic property in the middle and upper troposphere. The high sensible heat flux at the surface easily produced a positive potential vorticity anomaly in the low layer, resulting in convective instability, which was conducive to the maintenance of these processes. In the system, when precipitation particles passed through the unsaturated air layer, they underwent strong evaporation, melting or sublimation, and the cooling effect formed negative buoyancy, which accelerated the sinking of the air and promoted the sustained development of the surface gale. Together with the development of lowlevel mesocyclones, the air pressure decreased rapidly, which was conducive to gale initiation.
基金supported by National Natural Science Foun-dation of China Grant (Grant No. 40705017)the Chinese Academy of Sciences Grant (Grant No. 2004-2-7)the Natural Science Foundation of Shandong Province Grant(Grant No. Q2007E03)
文摘Using data from automatic surface weather stations, buoys, lidar and Doppler, the diurnal variation and the three-dimensional structure of the sea breezes near the sailing sites of the Good Luck Beijing- 2006 Qingdao International Regatta from 18 to 31 August 2006 are analyzed. Results show that excluding rainy days and days affected by typhoon, the sea breezes occur nearly every day during this period. When Qingdao is located at the edge of the subtropical high at 500 hPa, the sea breeze is usually stronger, around 3-4 m s^-1. It starts at around 1100 to 1300 LST and lasts about 6 hours. The direction of the sea breeze tends to be southeasterly. When Qingdao is under the control of the subtropical high, the sea breeze is usually weaker, less than 2.5 m s^-1 throughout the day, and begins later, between 1300 and 1500 LST. In this case, the direction of the sea breeze is variable from easterly to southeasterly. Most sea breezes in Qingdao are very shallow, up to 300 meters deep. Strong sea breezes can reach 1.5 km in depth and can push as far as 100 km inland. If the Huanghai sea breeze moves inland and meets the sea breeze of the Jiaozhou Bay in the western part of Qingdao, the sea breeze will strengthen and form three boundaries due to the interaction of the two sea breezes.
文摘The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesoscale community Weather Research and Forecasting(WRF)model in one-way nested domains at different horizontal resolutions.Results are compared with observations to examine the accuracy of model-simulated SB convection and factors that influence SB CI within the simulation.It is found that the WRF model can realistically reproduce the observed SB CI.Differences are found in the timing,location,and intensity of the convective cells at different domains with various spatial resolutions.With increasing spatial resolution,the simulation improvements are manifested mainly in the timing of CI and the orientation of the convection after the sea breeze front(SBF)merger into the squall line over the peninsula.Diagnoses indicate that accurate representation of geophysical variables(e.g.,coastline and bay shape,small lakes measuring 10-30 km2),better resolved by the high resolution,play a significant role in improving the simulations.The geophysical variables,together with the high resolution,impact the location and timing of SB CI due to changes in low-level atmospheric convergence and surface sensible heating.More importantly,they enable Florida lakes(30 km2 and larger)to produce noticeable lake breezes(LBs)that collide with the SBFs to produce CI.Furthermore,they also help the model reproduce a stronger convective squall line caused by merging SBs,leading to more accurate locations of postfrontal convective systems.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (Grant No. 2012-0007035)
文摘To examine the correlation between the sizes of sea breeze fronts and pollutants under the influence of synoptic fields, a numerical simulation was conducted in the southeast coastal area of the Korean Peninsula, where relatively high concentrations of pollutants occur because of the presence of various kinds of industrial developments. Sea breeze and sea breeze front days during the period 2005 09 were identified using wind profiler data and, according to the results, the number of days were 72 and 53, respectively. When synoptic forcing was weak, sea breeze fronts moved fast both in horizontal fields and in terms of wind velocity, while in the case of strong synoptic forcing, sea breeze fronts remained at the coast or moved slowly due to strong opposing flows. In this case, the sea breeze front development function and horizontal potential temperature difference were larger than with weak synoptic forcing. The ozone concentration that moves together with sea breeze fronts was also formed along the frontal surfaces. Ozone advection and diffusion in the case of strong synoptic forcing was suppressed at the frontal surface and the concentration gradient was large. The vertical distribution of ozone was very low due to the Thermal Internal Boundary Layer (TIBL) being low.
文摘This work discusses issues related to the impact of urbanization on the microphysical processes of precipitating systems associated with synoptic, mesoscale, and local scale systems. Among the issues addressed is the impact of urban heat <span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">island (UHI) in S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center and urban densification (UD) in the</span><span> </span><span style="font-family:Verdana;">Metropolitan Area of S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo (MASP) on the microphysical, dynamic, and</span><span style="font-family:Verdana;"> thermodynamic properties and distribution of precipitation and heavier rainfall from sea-breeze (SB) e cold-front (CF) combined during their space-time evolutions. For this purpose, it used four components: classification of hydrometeors with fuzzy logic, calculation of the raindrop diameters, an estimate of liquid water mass and ice mass from polarimetric-variables measured with dual-pola- rization X-band meteorological radar. The results indicated that urban densification (UD) and heat island (UHI) of the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center impact the formation of precipitation, liquid water mass, and ice mass, depth, and duration of </span><span style="font-family:Verdana;">a thunderstorm. It was also observed the asymmetric configuration of the th</span><span style="font-family:Verdana;">understorm is induced by the strong convergence in the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center, and this strong convergence is induced by the intense heat island (UHI) in the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center. Was also observed that this event that is formed in the Metropolitan Area of S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span>o Paulo (MASP) depends on microphysical processes of mixed-phase of the cloud (water and ice) above the 0<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span>C isotherm for the production of intense rain and cold pool at the surface. These important microphysical processes within long-lasting secondary convective cells over the S<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#F7F7F7;">ã</span></span></span></span>o Paulo city center should be taken into account on convective parameterization schemes as well as the associated cold pool dynamics.</span></span></span></span>
基金Supported by National Natural Fund in 2010 (40965003)Guangxi Science and Technology Project in Guangxi in 2007 (Guangxi Science Project 0719005-3-2)
文摘[Objective] The aim was to study the sea breeze front storm and its composite analysis in Beibu Gulf. [Method] By dint of routine observation data, ground automatic meteorology data and European numerical mode grid data, rainstorm caused by sea breeze in Guangxi during 1990 and 2007 and the strong convection triggered by sea breeze on June 5 in 2008 were expounded. The main characteristics of the configuration of circulation in the low and high latitude of breeze front of middle scale were summarized. [Result] Sea breeze front storm system was an important middle scale sea breeze front system that triggered storm in the Beibu Gulf. Sea breeze in Beibu Gulf occurred most easily during the southwest monsoon eruption period. Case study pointed out that after sunrise, the continental and island temperature in Beibu Gulf turned from warm-ocean-cold-island into warm-island-cold-ocean. The southerly airstream of high temperature and high humidity met with the relatively low temperature and dry northerly airstream in Beibu Gulf, and triggered vertical circulation and stimulated ground middle scale sea breeze front system. Composite analysis referred to the circulation characteristics of the ocean and continental temperature in Beibu Gulf. The upper air of south China was in strong divergence center. The air pressure was high in the east and low in the west. Beibu Gulf was in the southerly torrent belt in front of the trough and after the latitude in cyclonic circulation convergence area. The strata unstable structure of the divergence in the upper air and the convergence in the lower layer and the 'pumping effect' provided upward dynamics for the ocean circulation development. The southerly brought rich water vapor to the Beibu Gulf, which was conductive to the formation of strong convective cloud system in the lower layer and the generation of precipitation. [Conclusion] The research provided references for the study on the characteristics of middle scale convective system.
文摘The study presented herein is the analysis of Sodar based instrument measurements of air temperature, dew point, and vertical wind speed and direction, recorded at two South Carolina sites, Waties Island in North Myrtle Beach and in Sumter, and at three atmospheric ground stations. Two of the ground stations are National Weather Service stations near the Sodars and one is a Coastal Carolina University Sea-Econet, as a part of the National Oceanic & Atmospheric Administration, MESO program, weather-sensor site on the Coastal Carolina University campus in Conway South Carolina. Objectives of this study are to establish specific values of winds, land and sea temperatures, precipitation and dew points associated with the changes induced by passages of the Sea Breeze Front, and to examine differences in the station-to-station incarnation of the Sea Breeze circulation. Variability from station to station in the nature and timing of Sea Breeze Front passage is found to be a function of relative proximity to the coast with Sea Breeze Front passage occurring earliest at the North Myrtle Beach site (the station at the coast), then at Sumter (~100 km inland) and finally Aiken at >100 km inland. Satellite based estimates of the percentages of onshore penetration distances from the coast are depicted. Wind vectors and air temperatures associated with onsets and passages of the Sea Breeze display robust wind fields directed onshore perpendicular to the coastline. Kinematical descriptors of the Sea Breeze wind particle motions are presented and display coherent stable elliptical motions during the late summer to early fall but are absent during the winter.
基金Supported by the Beijing Natural Science Foundation(8222048)Open Grants of the State Key Laboratory of Severe Weather(2022LASW-A03)+2 种基金Key Innovation Team of China Meteorological Administration(CMA2022ZD09)China Meteorological Administration Innovation Development Project(CXFZ2023J061)Tianjin Meteorology Service Project(202113ybxm05)。
文摘A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes before and after the SBF passed through two meteorological towers in the urban areas of Tianjin and Beijing,respectively.Significant changes in temperature,humidity,winds,CO_(2),and aerosol concentrations were observed as the SBF passed.Differences in these changes at the two towers mainly resulted from their distances from the ocean,boundary layer conditions,and background turbulences.As the SBF approached,a strong updraft appeared in the boundary layer,carrying near-surface aerosols aloft and forming the SBF head.This was followed by a broad downdraft,which destroyed the near-surface inversion layer and temporarily increased the surface air temperature at night.The feeder flow after the thermodynamic front was characterized by low-level jets horizontally,and downdrafts and occasional updrafts vertically.Turbulence increased significantly during the SBF’s passage,causing an increase in the standard deviation of wind components in speed.The increase in turbulence was more pronounced in a stable boundary layer compared to that in a convective boundary layer.The passage of the SBF generated more mechanical turbulences,as indicated by increased friction velocity and turbulent kinetic energy(TKE).The shear term in the TKE budget equation increased more significantly than the buoyancy term.The atmosphere shifted to a forced convective state after the SBF’s passage,with near isotropic turbulences and uniform mixing and diffusion of aerosols.Sensible heat fluxes(latent heat and CO_(2)fluxes)showed positive(negative)peaks after the SBF’s passage,primarily caused by horizontal and vertical transport of heat(water vapor and CO_(2))during its passage.This study enhances understanding of boundary layer changes,turbulences,and fluxes during the passage of SBFs over urban areas.
基金Project supported by the State Natural Science Fund.
文摘In this paper the seasonal variation and structural characteristics of the sea/ land breeze in the northern coastal area of' Shandong Peninsula are studied in two ways: one is the analysis of the observed wind data, and the other is numerical simulation and experiments. Firstly, the hour to hour wind data through the year 1984 at Longkou Meteorological Station and Yantai Oceanographic Station are analysed through energy spectra and hodograph. It is revealed from the analysed results that the effects of the sea/ land breeze in the area are notable in spring, summer and fall, especially in May. However, in winter the effects of sea / land breeze are not obvious. because the cold noitherly is prevailing. Secondly, a two-dimensional non- linear model of primitive equations is used to study the sea / land breeze circulation in May in the area. The results of numerical simulation consist basically with the analysed results of the observed sea / land breeze. A reasonable theoretical structure of the sea / land breeze circulation is displayed, and a new undeerslanding of the developmental mechanism of land breeze circulation in that area is obtained. Lastly, numerical experiments about the effects of large scale wind and temperature fields upon the sea / land breeze circulation are performed.
基金National Natural Science Foundation of China(41905096)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(SCSF202004)。
文摘This study investigates the roles of the boreal summer intraseasonal oscillation(BSISO)in the diurnal rainfall cycle over Hainan Island during the warm season(April-September)using 20-year satellite-based precipitation,ERA5 and the outgoing longwave radiation data with the phase composite analysis method.Results show that the spatial distributions of the hourly rainfall anomaly significantly change under the BSISO phases 1-8 while no clear variations are found on the daily and anomaly daily area-averaged rainfall over the island.During the BSISO phase 1,the rainfall anomaly distinctly increases in the morning over the southwest and late afternoon over the northeast of the island,while suppressed convection occurs in the early afternoon over the southwest area.Under this circumstance,strong low-level westerly winds bring abundant moisture into the island,which helps initiate the nocturnal-morning convection over the south coastal area,and drives the convergence region of sea breeze fronts to concentrate into the northwest.Opposite to Phase 1,an almost completely reversed diurnal cycle of rainfall anomaly is found in Phase 5,whereas a positive anomalous rainfall peak is observed in the early afternoon over the center while negative peaks are found in the morning and late afternoon over the southwest and northeast,owing to a strong low-level northeasterly anomaly flow,which causes relatively low moisture and enlarges a sea-breeze convergence area over the island.During Phase 8,strongest moisture is found over the island all through the day,which tends to produce highest rainfall in the afternoon with enhanced anomalous northerly.These results further indicate that multiscale interactions between the large-scale circulations and local land-sea breeze circulations play important roles in modulating diurnal precipitation cycles over the tropical island.
基金supported by the Basic Scientific Fund for National Public Research Institutes of China(No.2018Q01)the Natural Science Foundation of Shandong Province(China)(No.ZR202102190358)+2 种基金the National Natural Science Foundation of China(No.41821004)the international cooperation project on Indo-Pacific Ocean environmental variability and air-sea interactions(China)(No.GASIIPOVAI-05)the Aoshan Talents Cultivation Excellent Scholar Program supported by Qingdao National Laboratory for Marine Science and Technology(China)(No.2017ASTCP-ES04).
文摘Methane(CH_(4))and carbon dioxide(CO_(2))are the two most important greenhouse gases(GHGs).To examine the variation characteristics of CH_(4)and CO_(2)in the coastal South China Sea,atmospheric CH_(4)and CO_(2)measurements were performed in Bohe(BH),Guangdong,China,in summer 2021.By using an adaptive data analysis method,the diurnal patterns of CH_(4)and CO_(2)were clearly extracted and analysed in relation to the sea breeze(SB)and land breeze(LB),respectively.The average concentrations of CH_(4)and CO_(2)were 1876.91±31.13 ppb and 407.99±4.24 ppm during SB,and 1988.12±109.92 ppb and 421.54±14.89 ppm during LB,respectively.The values of CH_(4)and CO_(2)during SB basically coincided with the values and trends of marine background sites,showing that the BH station could serve as an ideal site for background GHG monitoring and dynamic analysis.The extracted diurnal variations in CH_(4)and CO_(2)showed sunrise high and sunset low patterns(with peaks at 5:00–7:00)during LB but mid-morning high and evening low patterns(with peaks at 9:00)during SB.The diurnal amplitude changes in both CH_(4)and CO_(2)during LB were almost two to three times those during SB.Wind direction significantly modulated the diurnal variations in CH_(4)and CO_(2).The results in this study provide a new way to examine the variations in GHGs on different timescales and can also help us gain a better understanding of GHG sources and distributions in the South China Sea.
基金supported by the KAKENHI Grant (No. 26220202) from the Japan Society for the Promotion of Science (JSPS)the Leading Project in Japanese Fiscal Year 2015 and 2016 of Tokyo Metropolitan University
文摘Long-term climate changes related with urbanization in Tokyo, Japan, and recent temperature and heavy rainfall distribution in the Tokyo metropolitan area are reviewed. A relatively high temperature increase in annual mean temperature at the rate of 3.0°C/century was detected in Tokyo for the period 1901–2015. Some observational evidence showed the existence of both thermal and mechanical effects of urbanization on recent heavy rainfall occurrences, and modeling studies also support precipitation enhancement. Urban influences were recognized in other climatological elements, such as number of fog days, relative humidity, and wind circulation.
基金supported by the National Key R&D Program of China(No.2017YFC 0210000)the National Natural Science Foundation of China(Nos.41230642 and 41705113)the Beijing Municipal Science and Technology Project(No.ZL171100000617002)
文摘The thermal internal boundary layer(TIBL) is associated with coastal pollution dispersion,which can result in high concentrations of air pollutants near the surface of the Earth. In this study, boundary layer height data which were obtained using a ceilometer were used to assess the effect of the TIBL on atmospheric pollutants in Qinhuangdao, a coastal city in North China.A TIBL formed on 33% of summer days. When a TIBL formed, the sunshine duration was 2.4 hr longer, the wind speed was higher, the wind direction reflected a typical sea breeze, and the boundary layer height was lower from 9:00 LT to 20:00 LT compared to days without a TIBL. If no TIBL formed, the average concentrations of PM2.5 and PM10 decreased with increasing boundary layer height. However, when a TIBL was observed, the average concentrations of PM2.5 and PM10 increased with increasing boundary layer height. Because the air from the sea is clean, PM2.5 and PM10 concentrations reached minimums in the daytime at 16:00 LT. After16:00 LT, the PM2.5 and PM10 concentrations increased rapidly on days when a TIBL formed,which indicated that the TIBL leads to the rapid accumulation of atmospheric pollutants in the evening. Therefore, the maximum concentrations of particulate matters were larger when a TIBL formed compared to when no TIBL was present during the night. These results indicate that it is suitable for outdoor activities in the daytime on days with a TIBL in coastal cities.
文摘By using the model developed in Part Ⅰ of the sister papers,simulations of severe storm,winter airflow and snowfall over a mountain,as well as mountain-valley winds and sea breeze are performed.Different functions of the model are verified through the computation and special emphasis is put on some important properties of the meso-(β-γ) systems frequently occurring.The simulation results of the cases are agreeable to field observations,conceptual models,and pre- vious numerical studies.It is shown that the model is applicable for the researches and prediction of various local and/or regional weather processes,and capable of describing their macro- and micro-structures,influences of orographic and underlying-surface forcing,and interaction between meso-β and meso-γ scales.In addition,the evolutional characteristics and mechanisms of the modeled processes are also analyzed.
基金supported by the National Natural Science Foundation of China (No. 41175004)the China Meteorological Administration Special Public Welfare Research Fund (No. GYHY201106033)
文摘Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height(PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers(EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2–2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution.The intensity of the sea–land and mountain–valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants,which is strongly affected by the local atmospheric circulations and the distribution of urban areas.