A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational i...A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.展开更多
To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic ...To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic IceOcean Modeling and Assimilation System(PIOMAS)are assimilated into this system,using the method of localized error subspace transform ensemble Kalman filter(LESTKF).Five-year(2014–2018)Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation.Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent.All the biases of ice concentration,ice cover,ice volume,and ice thickness can be reduced dramatically through ice concentration and thickness assimilation.The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system.The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation.Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-toseasonal(S2 S)Prediction Project,FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast.Since sea ice thickness in the PIOMAS is updated in time,it is a good choice for data assimilation to improve sea ice prediction skills in the near-realtime Arctic sea ice seasonal prediction.展开更多
The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. ...The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1 A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.展开更多
Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security.New prediction models for maize and rice yields are bui...Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security.New prediction models for maize and rice yields are built in this paper based on the spring North Atlantic Oscillation index and the Bering Sea ice cover index.The year-to-year increment is first forecasted and then the original yield value is obtained by adding the historical yield of the previous year.The multivariate linear prediction model of maize shows good predictive ability,with a low normalized root-mean-square error(NRMSE)of 13.9%,and the simulated yield accounts for 81%of the total variance of the observation.To improve the performance of the multivariate linear model,a combined forecasting model of rice is built by considering the weight of the predictors.The NRMSE of the model is 12.9%and the predicted rice yield explains 71%of the total variance.The corresponding cross-validation test and independent samples test further demonstrate the efficiency of the models.It is inferred that the statistical models established here by applying year-to-year increment approach could make rational prediction for the maize and rice yield in Northeast China before harvest.The present study may shed new light on yield prediction in advance by use of antecedent large-scale climate signals adequately.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Grant nos.40906099,40930848)the National Science and Technology Supporting Program of China(Grant no.2011BAC 03B02-03-02)the Ocean Public Welfare Scientific Research Project of China(Grant no.2012418007)
文摘A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407205 and2018YFA0605901the Basic Scientific Fund for National Public Research Institute of China(ShuXingbei Young Talent Program)under contract No.2019S06+1 种基金the National Natural Science Foundation of China under contract Nos 41821004,42022042 and 41941012the China-Korea Cooperation Project on Northwestern Pacific Climate Change and its Prediction。
文摘To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic IceOcean Modeling and Assimilation System(PIOMAS)are assimilated into this system,using the method of localized error subspace transform ensemble Kalman filter(LESTKF).Five-year(2014–2018)Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation.Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent.All the biases of ice concentration,ice cover,ice volume,and ice thickness can be reduced dramatically through ice concentration and thickness assimilation.The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system.The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation.Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-toseasonal(S2 S)Prediction Project,FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast.Since sea ice thickness in the PIOMAS is updated in time,it is a good choice for data assimilation to improve sea ice prediction skills in the near-realtime Arctic sea ice seasonal prediction.
基金The study was supported by“The Operational Application of the HY-l Satellite Data to the Sea Ice Forecasting Projet"the National Natural Science Foundation Projects of China under contract Nos 40233032 and 40376006,"Tenth Five-Year Plan”Science and Tech-nology Programme under contract Nos 2001BA603B-03 and 2001CB721006+1 种基金“The Antarctic Earth Environment Monitoring and Key Processes Research"Project under contract No.200lDIA50040 “863"Youth Sci-entists Foundation Project of China under contract No.2002AA639340.
文摘The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1 A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.
基金Supported by the National Natural Science Foundation of China(41210007 and 41421004)Basic Research and Operation Fund of Chinese Academy of Meteorological Sciences(2016Y007)
文摘Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security.New prediction models for maize and rice yields are built in this paper based on the spring North Atlantic Oscillation index and the Bering Sea ice cover index.The year-to-year increment is first forecasted and then the original yield value is obtained by adding the historical yield of the previous year.The multivariate linear prediction model of maize shows good predictive ability,with a low normalized root-mean-square error(NRMSE)of 13.9%,and the simulated yield accounts for 81%of the total variance of the observation.To improve the performance of the multivariate linear model,a combined forecasting model of rice is built by considering the weight of the predictors.The NRMSE of the model is 12.9%and the predicted rice yield explains 71%of the total variance.The corresponding cross-validation test and independent samples test further demonstrate the efficiency of the models.It is inferred that the statistical models established here by applying year-to-year increment approach could make rational prediction for the maize and rice yield in Northeast China before harvest.The present study may shed new light on yield prediction in advance by use of antecedent large-scale climate signals adequately.