期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Comprehensive Risk Assessment of Sea Level Rise and Tropical Cyclones in Dongzhaigang Mangroves,China
1
作者 DING Ruyi CAI Rongshuo +3 位作者 YAN Xiuhua LI Cuihua WANG Cui NIE Xinyu 《Chinese Geographical Science》 SCIE CSCD 2024年第4期631-646,共16页
Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ... Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management. 展开更多
关键词 MANGROVE climate change risk assessment combined hazards sea level rise(SLR) tropical cyclones(TCs) resilience development Dongzhaigang China
下载PDF
The Impact of Sea Level Rise on Roadway Design and Evacuation Routes in Delaware
2
作者 Jack Palevich Ardeshir Faghri Ahmet Karakurt 《American Journal of Climate Change》 2024年第1期69-82,共14页
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans... As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas. 展开更多
关键词 sea level Rise Roadway Design Evacuation Routes
下载PDF
Prediction of the joint impacts of sea level rise and land development on distribution patterns of mangrove communities
3
作者 Shanshan Liang Wenjia Hu +6 位作者 Peiqiang Wu Jianbu Wang Shangke Su Guangcheng Chen Jianguo Du Wenhua Liu Bin Chen 《Forest Ecosystems》 SCIE CSCD 2023年第2期176-186,共11页
Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually base... Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change. 展开更多
关键词 Coastal development Climate change Mangrove communities Mangrove adaption Land use sea level rise
下载PDF
Arctic Sea Level Variability from Oceanic Reanalysis and Observations
4
作者 Jinping WANG Xianyao CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2362-2377,共16页
Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide g... Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide gauge and satellite altimetry observations to quantify contributions from different physical processes on the ASL variability.The ORAS5 reanalysis shows that the ASL is rising with a trend of 2.5±0.3 mm yr−1(95%confidence level)over 1979-2018,which can be attributed to four components:(i)the dominant component from the global sea level increase of 1.9±0.5 mm yr−1,explaining 69.7%of the total variance of the ASL time series;(ii)the Arctic Oscillation-induced mass redistribution between the deep central basin and shallow shelves,with no significant trend and explaining 6.3%of the total variance;(iii)the steric sea level increase centering on the Beaufort Gyre region with a trend of 0.5±0.1 mm yr−1 and explaining 29.1%of the total variance of the ASL time series;and(iv)the intrusion of Pacific water into the Arctic Ocean,with no significant trend and contributing 14.2%of the total ASL variability.Furthermore,the dramatic sea ice melting and the larger area of open water changes the impact of the large-scale atmospheric forcing on the ASL variability after 1995,and the ocean dynamic circulation plays a more important role in the ASL variability. 展开更多
关键词 sea level variability Arctic Ocean sea level rise steric sea level global warming
下载PDF
Potential effects of sea level rise on the soil-atmosphere green-house gas emissions in Kandelia obovata mangrove forests
5
作者 Jiahui Chen Shichen Zeng +3 位作者 Min Gao Guangcheng Chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期25-32,共8页
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid... Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR. 展开更多
关键词 carbon dioxide METHANE nitrous oxide CO_(2)-equivalent fluxes sea level rise mangrove forest
下载PDF
Contributors to tidal duration asymmetry with varied coastline configurations on western shelf of Yellow Sea
6
作者 Xi Feng Zheng Li +3 位作者 Hui Feng Jia-yan Yang Shou-peng Xie Wei-bing Feng 《Water Science and Engineering》 EI CAS CSCD 2024年第1期1-12,共12页
Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is ... Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation. 展开更多
关键词 Tidal duration asymmetry Western inner shelf of Yellow sea Natural restoration Relative sea level rise Tidal amphidrome
下载PDF
Evaluating the Influence of Sea Level Rise on Beel Kapalia’s Livelihood and Local Adaptation Strategies: Perspectives from the Local Community
7
作者 Md. Rasheeq Rahman Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第4期617-636,共20页
Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore distri... Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore district, Khulna division. To assess local attitudes on sea level rise-related permanent flooding, Kapalia, Monoharpur, Nehalpur, Balidaha, and Panchakori were polled. This flooding has disrupted residents’ lifestyles, making them vulnerable to increasing sea levels. Viability and adaptability were assessed using livelihood capitals. Participants’ thoughts and knowledge about their resilience in several livelihood factors were gathered using participatory rural appraisal (PRA) instruments and a questionnaire survey in the area. Major discoveries include the impact of permanent floods on Beel Kapalia’s livelihoods, vulnerability and resilience assessments in numerous villages, and community viewpoints on regional adaptation methods to mitigate these consequences. The study found that a sustained 30.5 cm inundation would reduce local human, natural, physical, financial, and social capital resilience to 69.6%, 30.7%, 69.1%, 68.9%, and 69.1%. A constant 61 cm inundation would lower resistance to 40.9%, 8.7%, 42.4%, 45.6%, and 43.8%. Residents believe they can weather a 30.5 cm inundation with local adaptation measures, but if the water level rises to 61 cm, they may be displaced. 展开更多
关键词 ADAPTATION Beel Kapalia Climate Change Livelihood Capitals sea level Rise
下载PDF
Sea level rise projection in the South China Sea from CMIP5 models 被引量:5
8
作者 HUANG Chuanjiang QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期31-41,共11页
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210... Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves. 展开更多
关键词 sea level rise South China sea dynamic sea level steric sea level CMIP5 models
下载PDF
Greenland Ice Sheet Contribution to Future Global Sea Level Rise based on CMIP5 Models 被引量:5
9
作者 YAN Qing WANG Huijun +1 位作者 Ola M.JOHANNESSEN ZHANG Zhongshi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期8-16,共9页
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large u... Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs. 展开更多
关键词 sea level rise Greenland ice sheet ice sheet modeling model evaluation
下载PDF
Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas 被引量:3
10
作者 Chang-lin CHEN Jun-cheng ZUO +2 位作者 Mei-xiang CHEN Zhi-gang GAO C.-K.SHUM 《Water Science and Engineering》 EI CAS CSCD 2014年第4期446-456,共11页
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec... Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor. 展开更多
关键词 sea level rise steric sea level change IPCC-A2 scenario mass redistribution Bohai Yellow and East China seas
下载PDF
Adaptation strategy for sea level rise in vulnerable areasalong China's coast 被引量:3
11
作者 Du Bilan, Zhang Jinwen (China Institute of Marine Affairs, State Oceanic Administration, Beijing 100860, China National Marine Data and Information Service, Tianjin 300171, China) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2000年第4期1-16,共16页
It can be seen from the calculation that the vulnerable area along China's coast in which the elevation is less than 5 m, is 143 900 km2, accounting for about 11. 3% of the total area of the 11 coastal provinces, ... It can be seen from the calculation that the vulnerable area along China's coast in which the elevation is less than 5 m, is 143 900 km2, accounting for about 11. 3% of the total area of the 11 coastal provinces, municipalities and autonomous regions. These areas are threatened to varying extent by sea level rise. According to prediction, the relative sea level rise (including global sea level rise caused by climate change and local relative as level rise caused by vertical crust movement and ground subsidence) along China's coast will be 4~16 cm by the year 2030 with the optimum estimated value of 6~14cm. It will be 9~26 cm by the year 2050 with the optimum estimated value of 12-23 cm. And it will be 31-74 cm by the year 2100 with the optimum estimated value of 47~65 cm. The calcuation result shows that the percentage of the cost for up-grading (heightening and consolidating) sea dykes/walls in adaptation strategy in the losses of submerged areas varies from area to area: 6. 9% in the Zhujiang (Pearl) River Deta, 1. 3% ~24. 6% in the Changjiang (Yangtze) River Delta, and 0. 9%~2. 0% in the Huanghe River Delta. 展开更多
关键词 Adaptation strategy for sea level rise vulnerable areas along China's coast submerged areas
下载PDF
Responses of estuarine salinity and transport processes to sea level rise in the Zhujiang(Pearl River) Estuary 被引量:6
12
作者 CHEN Yuxiang ZUO Juncheng +2 位作者 ZOU Huazhi ZHANG Min ZHANG Kairong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期38-48,共11页
Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st cent... Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise. 展开更多
关键词 sea level rise salinity stratification transport process Zhujiang Estuary
下载PDF
Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels 被引量:1
13
作者 Jiahui Chen Min Gao +2 位作者 Guangcheng Chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第8期78-86,共9页
Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks... Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR. 展开更多
关键词 sea level rise vegetation biomass organic carbon stock COMPONENT mangrove forest Kandelia obovata
下载PDF
Statistical Modeling and Trend Detection of Extreme Sea Level Records in the Pearl River Estuary 被引量:1
14
作者 Weiwen WANG Wen ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第3期383-396,共14页
Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two... Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two tide gauge stations in Macao and Hong Kong. Extremes in the original sea level records (daily higher high water heights) and in tidal residuals with and without the 18.6-year nodal modulation are investigated separately. Thresholds for defining extreme sea levels are calibrated based on extreme value theory. Extreme events are then modeled by peaks-over-threshold models. The model applied to extremes in original sea level records does not include modeling of their durations, while a geometric distribution is added to model the duration of extremes in tidal residuals. Realistic modeling results are recommended in all stationary models. Parametric trends of extreme sea level records are then introduced to nonstationary models through a generalized linear model framework. The result shows that, in recent decades, since the 1960s, no significant trends can be found in any type of extreme at any station, which may be related to a reduction in the influence of tropical cyclones in the region. For the longer-term record since the 1920s at Macao, a regime shift of tidal amplitudes around the 1970s may partially explain the diverse trend of extremes in original sea level records and tidal residuals. 展开更多
关键词 sea level rise extreme climate change extreme value theory Pearl River Estuary
下载PDF
The effects of mean sea level rise and strengthened winds on extreme sea levels in the Baltic Sea 被引量:1
15
作者 Magnus Hieronymus Christian Dieterich +1 位作者 Helén Andersson Robinson Hordoir 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期366-371,I0003,共7页
Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea... Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate. 展开更多
关键词 Extreme sea levels sea level rise Wind speeds Baltic sea
下载PDF
Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades 被引量:2
16
作者 Shen Wenbin Shen Ziyu +1 位作者 Sun Rong Barkin Yuri 《Geodesy and Geodynamics》 2015年第4期248-252,共5页
According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of ... According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained. 展开更多
关键词 ITRF2008 coordinates Ice melting Thermal expansion Earth expansion sea level rise (SLR)Space-geodetic data Velocities altimetry Earth's solid surface
下载PDF
Assessing the Impacts of Sea Level Rise Using Existing Data 被引量:1
17
作者 Frederick Bloetscher Michael Wood 《Journal of Geoscience and Environment Protection》 2016年第9期159-183,共26页
Local communities want to know the cost of improvements needed to their drainage system based on projected sea level rise. Prior research demonstrates that in coastal areas, groundwater will rise with sea level. As a ... Local communities want to know the cost of improvements needed to their drainage system based on projected sea level rise. Prior research demonstrates that in coastal areas, groundwater will rise with sea level. As a result the combination of groundwater levels and tidal data must be used to predict local impacts of sea level rise on the drainage system. However, it would appear to complicate the situation if the amount of data available for making sea level rise projections with groundwater is limited. The objectives of this task were to identify available data in a data limited community, compare the available data, assess the impact of sea level rise on the community, and its impact on the stormwater system, identify vulnerable areas in the City, provide an estimate of long-term costs for improvements, and provide a toolbox of strategies to employ at the appropriate time. The project was conducted using ArcGIS tools to import tidal, groundwater, topographic LiDAR and infrastructure improvements into GIS software and performing analysis based on current data. The cost of improvements was based on applying actual 2015 construction costs in the subject comments across a larger vulnerable area. It was found that the data sources provided similar results, despite different timelines and dates so did not interfere with the subsequent analysis. The data revealed that over $400 million in current dollars might be needed to address stormwater issues arising from sea level rise before 2100. 展开更多
关键词 sea level Rise GROUNDWATER LIDAR GIS STORMWATER INFRASTRUCTURE
下载PDF
Effect of Sea Level Rise and Groundwater Withdrawal on Seawater Intrusion in the Gulf Coast Aquifer: Implications for Agriculture 被引量:1
18
作者 Faye Anderson Najla Al-Thani 《Journal of Geoscience and Environment Protection》 2016年第4期116-124,共9页
The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relev... The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities. 展开更多
关键词 sea level Rise GROUNDWATER Gulf Coast Aquifer Coastal Vulnerability REROUTING
下载PDF
Why would sea-level rise for global warming and polar ice-melt?
19
作者 Aftab Alam Khan 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期481-494,共14页
Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC.However, other cli... Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC.However, other climate threat investigators revealed that atmosphere-ocean modeling is an imperfect representation, paleo-data consist of proxy climate information with ambiguities, and modern observations are limited in scope and accuracy. It is revealed that global warming and polar ice-melt although a reality would not contribute to any sea level rise. Floating-ice of the polar region on melting would reoccupy same displaced volume by floating ice-sheets. Land-ice cover in the polar region on melting can reduce load from the crust to activate elastic rebound that would raise land for its isostatic equilibrium.Such characteristics would not contribute to sea level rise. Equatorial bulge, polar flattening, elevation difference of the spheroidal surface between equator and pole with lower in the pole, strong gravity attraction of the polar region and week gravity attraction of the equatorial region, all these phenomena would play dominant role in preventing sea level rise. Palaeo-sea level rise and fall in macro-scale(10-100 m or so) were related to marine transgression and regression in addition to other geologic events like converging and diverging plate tectonics, orogenic uplift of the collision margin, basin subsidence of the extensional crust, volcanic activities in the oceanic region, prograding delta buildup, ocean floor height change and sub-marine mass avalanche. This study also reveals that geophysical shape, gravity attraction and the centrifugal force of spinning and rotation of the earth would continue acting against sea level rise. 展开更多
关键词 Global warming Polar ice-melt Equatorial bulge Polar flattening Geologic events sea level rise
下载PDF
Historical Change and Future Scenarios of Sea Level Rise in Macao and Adjacent Waters
20
作者 Lin WANG Gang HUANG +1 位作者 Wen ZHON Wen CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期462-475,共14页
Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both h... Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macao is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr I over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macao contributes little to local sea level change. In the future, the rate of SLR in Macao will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the --8.5 W m 2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65 118 cm--double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter. 展开更多
关键词 MACAO sea level rise emissions scenario climate sensitivity vertical land movement uncertainty
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部