期刊文献+
共找到4,020篇文章
< 1 2 201 >
每页显示 20 50 100
Contribution of Surface Waves to Sea Surface Temperatures in the Arctic Ocean
1
作者 WEI Meng SHAO Weizeng +3 位作者 SHEN Wei HU Yuyi ZHANG Yu ZUO Juncheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1151-1162,共12页
The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated... The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH. 展开更多
关键词 sea surface wave sea surface temperature Arctic Ocean
下载PDF
Limited Sea Surface Temperature Cooling Due to the Barrier Layer Promoting Super Typhoon Mangkhut(2018)
2
作者 Huipeng WANG Jiagen LI +8 位作者 Junqiang SONG Liang SUN Fu LIU Han ZHANG Kaijun REN Huizan WANG Chunming WANG Jinrong ZHANG Hongze LENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2156-2172,共17页
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)... This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018. 展开更多
关键词 sea surface cooling mixed-layer depth barrier layer TYPHOON
下载PDF
Analysis of Sea Surface Temperature Cooling in Typhoon Events Passing the Kuroshio Current
3
作者 HU Yuyi SHAO Weizeng +3 位作者 SHEN Wei ZUO Juncheng JIANG Tao HU Song 《Journal of Ocean University of China》 CAS CSCD 2024年第2期287-303,共17页
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s... The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current. 展开更多
关键词 typhoon wave sea surface temperature Kuroshio Current
下载PDF
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
4
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 Dynamic optimal interpolation Linearoptimal interpolation Satellite altimetry sea surface height Suitable region
下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
5
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
下载PDF
Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal
6
作者 Hafez Ahmad Felix Jose +2 位作者 Md.Simul Bhuyan Md.Nazrul Islam Padmanava Dash 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期1-14,共14页
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa... Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries. 展开更多
关键词 chlorophyll a sea surface temperature euphotic zone depth primary productivity Ganges-Brahmaputra ocean color Bay of Bengal MONSOON
下载PDF
Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves
7
作者 Hao Zhang Chenqing Fan +1 位作者 Lina Sun Junmin Meng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期54-64,共11页
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t... Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms. 展开更多
关键词 internal solitary waves surface Water and Ocean Topography(SWOT) Ka-band radar interferometer(KaRIn) Nadir altimeter(NALT) sea surface height anomaly(SSHA) normalized radar cross section(NRCS)
下载PDF
The Relationship between Extreme Precipitation Events in East Africa during the Short Rainy Season and Indian Ocean Sea Surface Temperature
8
作者 Jafari Swalehe Chobo Liwei Huo 《Journal of Geoscience and Environment Protection》 2024年第9期1-16,共16页
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the... The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies. 展开更多
关键词 East Africa sea surface Temperature (SST) Extreme Rainfall Short Rains season Indian Ocean Dipole (IOD)
下载PDF
Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas 被引量:4
9
作者 Yimi Zhang Wanyin Wang +5 位作者 Linzhi Li Xingang Luo Dingding Wang Tao He Feifei Zhang Jing Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期167-188,共22页
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact... Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities. 展开更多
关键词 China seas and adjacent areas Moho surface oil and gas basins
下载PDF
Impacts of Ice-Ocean Stress on the Subpolar Southern Ocean:Role of the Ocean Surface Current
10
作者 Yang WU Zhaomin WANG +1 位作者 Chengyan LIU Liangjun YAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期293-309,共17页
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t... The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice. 展开更多
关键词 subpolar Southern Ocean Antarctic sea ice ice-ocean stress air-sea-ice-ocean interaction ocean surface current MITgcm-ECCO2
下载PDF
The Coordinated Influence of Indian Ocean Sea Surface Temperature and Arctic Sea Ice on Anomalous Northeast China Cold Vortex Activities with Different Paths during Late Summer 被引量:2
11
作者 Yitong LIN Yihe FANG +3 位作者 Chunyu ZHAO Zhiqiang GONG Siqi YANG Yiqiu YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期62-77,共16页
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC... The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months. 展开更多
关键词 machine learning method Northeast China cold vortex path classification Indian Ocean sea surface temperature Arctic sea ice model sensitivity test
下载PDF
Impacts of Sea Surface Temperature on the Interannual Variability of Winter Haze Days in Guangdong Province 被引量:3
12
作者 刘晴晴 李春晖 +3 位作者 谷德军 郑彬 林爱兰 彭冬冬 《Journal of Tropical Meteorology》 SCIE 2023年第2期168-178,共11页
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading... The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze. 展开更多
关键词 Guangdong province winter haze days interannual variability sea surface temperature ENSO
下载PDF
Diversity on the Interannual Variations of Spring Monthly Precipitation in Southern China and the Associated Tropical Sea Surface Temperature Anomalies 被引量:3
13
作者 郭如月 潘蔚娟 +2 位作者 柯敏玲 魏维 王子谦 《Journal of Tropical Meteorology》 SCIE 2023年第3期337-346,共10页
There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri... There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation. 展开更多
关键词 spring precipitation monthly diversity interannual variation southern China tropical sea surface temperature
下载PDF
Obtaining accurate measurements of the sea surface height from a GPS buoy 被引量:1
14
作者 Wanlin Zhai Jianhua Zhu +5 位作者 Chuntao Chen Wu Zhou Longhao Yan Yufei Zhang Xiaoqi Huang Kai Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期78-88,共11页
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have... A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions. 展开更多
关键词 GPS buoy sea surface height baseline length precise point positioning satellite altimeter HY-2
下载PDF
The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex 被引量:1
15
作者 Tao WANG Qiang FU +5 位作者 Wenshou TIAN Hongwen LIU Yifeng PENG Fei XIE Hongying TIAN Jiali LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2262-2278,共17页
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S... This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations. 展开更多
关键词 Arctic stratospheric polar vortex stratosphere-troposphere interactions North Pacific sea surface temperature Aleutian low
下载PDF
Characteristics and mechanisms of the intraseasonal variability of sea surface salinity in the southeastern Arabian Sea during 2015-2020
16
作者 Hui Teng Yun Qiu +1 位作者 Xinyu Lin Xiwu Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期25-34,共10页
Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HY... Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HYCOM)data,this work explores the characteristics and mechanisms of the intraseasonal variability of SSS in the southeastern Arabian Sea(SEAS).The results show that the intraseasonal variability of SSS in the SEAS is very significant,especially the strongest intraseasonal signal in SSS,which is located along the northeast monsoon current(NMC)path south of the Indian Peninsula.There are remarkable seasonal differences in intraseasonal SSS variability,which is very weak in spring and summer and much stronger in autumn and winter.This strong intraseasonal variability in autumn and winter is closely related to the Madden-Julian Oscillation(MJO)event during this period.The northeast wind anomaly in the Bay of Bengal(BOB)associated with the active MJO phase strengthens the East India Coastal Current and NMC and consequently induces more BOB low-salinity water to enter the SEAS,causing strong SSS fluctuations.In addition,MJO-related precipitation further amplifies the intraseasonal variability of SSS in SEAS.Based on budget analysis of the mixed layer salinity using HYCOM data,it is shown that horizontal salinity advection(especially zonal advection)dominates the intraseasonal variability of mixed layer salinity and that surface freshwater flux has a secondary role. 展开更多
关键词 southeastern Arabian sea sea surface salinity intraseasonal variability air-sea interaction
下载PDF
Validation of the multi-satellite merged sea surface salinity in the South China Sea
17
作者 Huipeng WANG Junqiang SONG +3 位作者 Chengwu ZHAO Xiangrong YANG Hongze LENG Nan ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2033-2044,共12页
Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS mea... Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data. 展开更多
关键词 sea surface salinity(SSS) South China sea(SCS) ARGO multi-satellite merged data VALIDATION
下载PDF
Blend with the Sea Surface Temperature from Different Satellites and Their Comparison in the Southeast Pacific Ocean
18
作者 WU Yumei TANG Fenghua +3 位作者 DAI Yang WANG Fei SHI Yongchuang ZHANG Shengmao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期452-458,共7页
The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rate... The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rates of the SST of the blend result were improved highly and more stable throughout the whole year,compared with the result of the single satellite of GMI,GOES,and MODIS.The yearly average coverage rates of GMI,GOES,MODIS,and blend were 43%,48%,30%,and 76%,and their corresponding yearly average standard deviation(SD)were 4%,6%,7%,and 4%,respectively.All the coverage rates of these three satellites were low from April to September.The valid observation days calculated in the whole year over every grid were used to represent the spatial distribution patterns of the coverage rates.The spatial distribution patterns of coverage rates from GOES and MODIS were similar that their valid observation days were higher in the northwest area and lower in the south area,and those of GMI was contrary to the former two.The ranges of valid observation day was from GOES,GMI,and MODIS were 0-364,6-254,and 9-231 d,respectively.After the blend,all the observation day of every grid in the research region was enhanced(103-366 d).Especially the near shore and south area,and the minimum valid observation day increased largely from the single digits to hundreds digit. 展开更多
关键词 sea surface temperature BLEND coverage rate observation day
下载PDF
Correlation Between the Arabian Sea Surface Temperature and the Onset Period of South Asian Summer Monsoon with Trend Analysis on the Intensity
19
作者 HAN Shuzong WANG Ruoqi +1 位作者 ZHANG Shuiping CHEN Zhentao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期930-938,共9页
The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual dis... The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual distribution to a spatially uniform distribution and then to a zonal gradual distribution.The South Asian summer monsoon intensity(SASMI)and South Asian summer monsoon direction(SASMD)indicate that the variation of the ASST is highly related to the formation of the SASM during the summer monsoon period and can contribute to the spread of the SASM from the Southwest Arabian Sea throughout all of South Asia.Results of the correlation between the ASST and SASMI for the same month and its adjacent months were the same,and the areas of the positive correlation between the ASST and SASMI significantly increased from May–June as compared to April–May.The maximum correlation coefficient was 0.86.The results of the ASST and SASMD for the same month and its adjacent months were substantially different.However,the ASST and SASMD for May and April also showed a high positive correlation with a maximum correlation coefficient of 0.61 in the southwestern Arabian Sea.Existence of the ASST had a spatially consistent and significant upward trend with a mean increase of 0.6℃during the summer monsoon period from 1980 to 2020(between April and September),whereas the SASMI had a strengthening trend along the western and southwestern regions of the Arabian Sea and the southeastern region of the Arabian Peninsula.Meanwhile,the rest of the study regions showed a declining trend.Overall,the entire study region showed a slight downward trend,and the average value decreased by 0.02ms^(−1). 展开更多
关键词 Arabian sea surface temperature South Asian summer monsoon Indian summer monsoon air-sea interaction
下载PDF
Gravity anomalies determined from mean sea surface model data over the Gulf of Mexico
20
作者 Xuyang Wei Xin Liu +4 位作者 Zhen Li Xiaotao Chang Hongxin Luo Chengcheng Zhu Jinyun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期39-50,共12页
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat... With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high. 展开更多
关键词 mean sea surface gravity anomaly Gulf of Mexico inverse Vening-Meinesz formula mean dynamic topography satellite altimetry
下载PDF
上一页 1 2 201 下一页 到第
使用帮助 返回顶部