New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1...New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.展开更多
Biogenic reefs are one of two major depositional types in the South China Sea, and are constructed by coral, algae and bryozoa. The West Pacific is a major area of biogenic reef development and plays a critical role i...Biogenic reefs are one of two major depositional types in the South China Sea, and are constructed by coral, algae and bryozoa. The West Pacific is a major area of biogenic reef development and plays a critical role in the global carbon cycle. However, the lack of geochronological studies in previous works inhibits our understanding of their contributions. Herein, we conduct a cyclostratigraphic and magnetostratigraphic study on Neogene biogenic reefs using the XK–1 core that was drilled at the Shidao Island,Xisha(Paracel) Islands. The main findings of this study are:(1) the establishment of reliable magentostratigraphy for Ledong, Huangliu, Meishan and Sanya Formations;(2) the magnetic susceptibility variation can be inferred as growth index and tuned to the 405–ka long eccentricity cycle;(3) the astronomical geochronology suggests that the bottom ages for Ledong, Yinggehai, Huangliu, Meishan,and Sanya Formations are 2.2 Ma, 5.7 Ma, 10.4 Ma, 16.6 Ma, and 24.3 Ma, respectively; and (4) Earth's eccentricity and obliquity played predominant roles in biogenic reef establishment on orbital to tectonic timescales. Thus, the reported geochronology offers an opportunity to test the contributions of various factors and hypothesize their roles in the global carbon cycle in future.展开更多
基金supported by the Russian Fund of Fundamental Research(Grant No.11-05-00280)
文摘New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.
基金supported by the National Natural Science Foundation of China(41630965,41690112 and 41621004)the National Programme on Global Change and Air–Sea Interaction of China(GASI–GEOGE–04)the Fundamental Research Funds for the Central Universities
文摘Biogenic reefs are one of two major depositional types in the South China Sea, and are constructed by coral, algae and bryozoa. The West Pacific is a major area of biogenic reef development and plays a critical role in the global carbon cycle. However, the lack of geochronological studies in previous works inhibits our understanding of their contributions. Herein, we conduct a cyclostratigraphic and magnetostratigraphic study on Neogene biogenic reefs using the XK–1 core that was drilled at the Shidao Island,Xisha(Paracel) Islands. The main findings of this study are:(1) the establishment of reliable magentostratigraphy for Ledong, Huangliu, Meishan and Sanya Formations;(2) the magnetic susceptibility variation can be inferred as growth index and tuned to the 405–ka long eccentricity cycle;(3) the astronomical geochronology suggests that the bottom ages for Ledong, Yinggehai, Huangliu, Meishan,and Sanya Formations are 2.2 Ma, 5.7 Ma, 10.4 Ma, 16.6 Ma, and 24.3 Ma, respectively; and (4) Earth's eccentricity and obliquity played predominant roles in biogenic reef establishment on orbital to tectonic timescales. Thus, the reported geochronology offers an opportunity to test the contributions of various factors and hypothesize their roles in the global carbon cycle in future.