Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds an...Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.展开更多
The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divid...The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.展开更多
This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the devel...This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.展开更多
In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-ra...In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations.These dynamic fluctuations will change the energy propagation path and affect the final imaging results.In theoretical research,different sea surface conditions need to be described,so it is necessary to study the modeling method of dynamic undulating sea surface.Starting from the commonly used sea surface mathematical simulation methods,this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum,and compares their advantages and disadvantages.Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect,a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed.The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method.In addition,this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.展开更多
The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this cou...The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.展开更多
Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(...Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(TEP)from preceding September to June by using an atmospheric general circulation model (AGCM).We constructed composite positive/negative SST anomalies(P-SSTAs/N-SSTAs)based on the observational SST anomalies over the TEP from September 1997 to June 1998.The results show that:(1) the response of the precipitation in the Yangtze River basin and its southern area(YRBS)to El Nino with different durations varies with the maximum amplitude of the precipitation anomalies appearing when the imposed duration is from November to next June,and the minimum appearing when the SST anomalies is only imposed in June.The anomalies of the precipitation are reduced when the duration of the forcing SST anomalies over the TEP is shortened and the positive SST anomalies in the preceding autumn tend to cause significantly more rainfall in the YRBS.This is in agreement with previous diagnostic analysis results.(2)The simulated precipitation anomalies over the YRBS are always obviously positive under strong or weak positive SST anomalies over the TEP.The intensity of the precipitation anomalies increases with increasing intensity of the SST anomalies in the experiments.The simulation results are consistent with the observations during the warm SST events,suggesting reasonable modeling results.(3)When negative SST anomalies in the TEP are put into the model,the results are different from those of the diagnostic analysis of La Nina events.Negative precipitation anomalies in YRBS could be reproduced only when the negative SST anomalies are strong enough.展开更多
基金The Ministry of Oceans and Fisheries of Korea-"The Research and Development on Coastal Hydraulic Investigation of Busan New Port"and"Cooperative Project on Korea-China Bilateral Committee on Ocean Science"the Korea Institute of Ocean Science and Technology(KIOST)Project under contract No.PE99325+1 种基金the China-Korea Joint Ocean Research Center(CKJORC)-"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"the Nuclear Safety Project of CKJORC and Major Project of KIOST under contract No.PE99304
文摘Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.
文摘The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.
基金supported by the National Natural Science Foundation of China (NSFC) (41175006)‘973 Program’(2012CB955602) and the Ministry of Education (MOE)(20090132110008)
文摘This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.
基金The General Program of National Natural Science Foundation of China under contract No.42074150the National Key Research and Development Project under contract No.2017YFC0601305。
文摘In conventional marine seismic exploration data processing,the sea surface is usually treated as a horizontal free boundary.However,the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations.These dynamic fluctuations will change the energy propagation path and affect the final imaging results.In theoretical research,different sea surface conditions need to be described,so it is necessary to study the modeling method of dynamic undulating sea surface.Starting from the commonly used sea surface mathematical simulation methods,this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum,and compares their advantages and disadvantages.Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect,a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed.The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method.In addition,this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.
基金Key Program of National Natural Science Foundation of China (40830235, 40333025)State Key Development Program of Basic Research (973 Program) of China (2004CB418301)
文摘The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.
基金the National Natural Science Foundation of China under Grant No.40675034,China-Japan inter governmental cooperation program of the Japan International Cooperation Agency under Grant No.2009LASWZF04the program of Ministryof Science and Technology of China under Grant No.2009DFB20540the Science and Technology Innovation Program ofJiangsu Province under Grant No.CX09B-221Z
文摘Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(TEP)from preceding September to June by using an atmospheric general circulation model (AGCM).We constructed composite positive/negative SST anomalies(P-SSTAs/N-SSTAs)based on the observational SST anomalies over the TEP from September 1997 to June 1998.The results show that:(1) the response of the precipitation in the Yangtze River basin and its southern area(YRBS)to El Nino with different durations varies with the maximum amplitude of the precipitation anomalies appearing when the imposed duration is from November to next June,and the minimum appearing when the SST anomalies is only imposed in June.The anomalies of the precipitation are reduced when the duration of the forcing SST anomalies over the TEP is shortened and the positive SST anomalies in the preceding autumn tend to cause significantly more rainfall in the YRBS.This is in agreement with previous diagnostic analysis results.(2)The simulated precipitation anomalies over the YRBS are always obviously positive under strong or weak positive SST anomalies over the TEP.The intensity of the precipitation anomalies increases with increasing intensity of the SST anomalies in the experiments.The simulation results are consistent with the observations during the warm SST events,suggesting reasonable modeling results.(3)When negative SST anomalies in the TEP are put into the model,the results are different from those of the diagnostic analysis of La Nina events.Negative precipitation anomalies in YRBS could be reproduced only when the negative SST anomalies are strong enough.