期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Study of relationship between wave transport and sea surface temperature anomaly(SSTA) in the tropical Pacific 被引量:2
1
作者 SHI Yongfang WU Kejian +2 位作者 ZHU Xianye YANG Fan ZHANG Yuming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第9期58-66,共9页
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific an... Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies. 展开更多
关键词 wave transport eastern equatorial Pacific sea surface temperature anomaly warm events
下载PDF
Forecasts of South China Sea surface temperature anomalies using the Nio indices and dipole mode index as predictors
2
作者 陈海英 方国洪 +2 位作者 尹宝树 王永刚 魏泽勋 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第1期144-152,共9页
Based on an empirical orthogonal function (EOF) analysis of the monthly NCEP Optimum Interpolation Sea Surface Temperature (OISST) data in the South China Sea (SCS) after removing the climatological mean and tre... Based on an empirical orthogonal function (EOF) analysis of the monthly NCEP Optimum Interpolation Sea Surface Temperature (OISST) data in the South China Sea (SCS) after removing the climatological mean and trends of SST, over the period of January 1982 to October 2003, the corresponding TCF correlates best with the Dipole Mode Index (DMI), Nino1+2, Nino3.4, Nino3, and Niflo4 indices with time lags of 10, 3, 6, 5, and 6 months, respectively. Thus, a statistical hindcasts in the prediction model are based on a canonical correlation analysis (CCA) model using the above indices as predictors spanning from 1993/1994 to 2003/2004 with a 1-12 month lead time after the canonical variants are calculated, using data from the training periods from January 1982 to December1992. The forecast model is successful and steady when the lead times are 1-12 months. The SCS warm event in 1998 was successfully predicted with lead times from 1-12 months irrespective of the strength or time extent. The prediction ability for SSTA is lower during weak ENSO years, in which other local factors should be also considered as local effects play a relatively important role in these years. We designed the two forecast models: one using both DMI and Nino indices and the other using only Nino indices without DMI, and compared the forecast accuracies of the two cases. The spatial distributions of forecast accuracies show different confidence areas. By turning off the DMI, the forecast accuracy is lower in the coastal areas off the Philippines in the SCS, suggesting some teleconnection may occur with the Indian Ocean in this area. The highest forecast accuracies occur when the forecast interval is five months long without using the DMI, while using both of Nino indices and DMI, the highest accuracies occur when the forecast interval time is eight months, suggesting that the Nino indices dominate the interannual variability of SST anomalies in the SCS. Meanwhile the forecast accuracy is evaluated over an independent test period of more than 11 years (1993/94 to October 2004) by comparing the model performance with a simple prediction strategy involving the persistence of sea surface temperature anomalies over a 1-12 month lead time (the persisted prediction). Predictions based on the CCA model show a significant improvement over the persisted prediction, especially with an increased lead time (longer than 3 months). The forecast model performs steadily and the forecast accuracy, i.e., the correlation coefficients between the observed and predicted SSTA in the SCS are about 0.5 in most middle and southern SCS areas, when the thresholds are greater than the 95% confidence level. For all 1 to 12 month lead time forecasts, the root mean square errors have a standard deviation of about 0.2. The seasonal differences in the prediction performance for the 1-12 month lead time are also examined. 展开更多
关键词 forecast sea surface temperature anomaly (ssta canonical correlation analysis (CCA) Nifioindices dipole mode index (DMI)
下载PDF
The Relationships between Variations of Sea Surface Temperature Anomalies in the Key Ocean Areas and the Precipitation and Surface Air Temperature in China 被引量:2
3
作者 张卫青 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第2期294-308,共15页
The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface tempera... The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170. 展开更多
关键词 Variations of sea surface temperature anomalies Precipitation anomalies temperature anomalies Statistical significance test
下载PDF
Characteristics of Tropical Sea Surface Temperature Anomalies and Their Influences on the Onset of South China Sea Summer Monsoon 被引量:3
4
作者 LIANG Jie-Yi WEN Zhi-Ping +1 位作者 CHEN Jie-Peng and WU Li-Ji 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期266-272,共7页
The characteristics of sea surface temperature anomalies (SSTAs) in the tropical oceans and their influences on the onset of South China Sea summer monsoon (SCSSM) have been studied.The anomaly of SST in tropical ... The characteristics of sea surface temperature anomalies (SSTAs) in the tropical oceans and their influences on the onset of South China Sea summer monsoon (SCSSM) have been studied.The anomaly of SST in tropical Pacific Ocean exerts persistence impact for one to three months on atmospheric circulations.If the warm pool becomes anomalously warmer during an earlier period from February to April,the SCSSM breaks out earlier,and vice versa.Singular value decomposition (SVD) and composite analysis have shown that,in La Ni(n)a pattern,the convection over Western Pacific will occur earlier and be stronger than normal,which favors the convergence at a lower layer over Western Pacific,as well as the strengthening of upwelling branch of Walker circulation,leading to an earlier burst of westerly in the southern South China Sea.Moreover,the convection in Sumatra appears earlier than normal and favors the westerly evolution in eastern Indian Ocean,resulting in the splitting of the subtropical high belt and an early onset of SCSSM.However,the atmospheric circulation anomaly is reversed in El Ni(n)o pattern. 展开更多
关键词 onset of South China sea summer monsoon tropical pacific ocean sea surface temperature anomalies
下载PDF
Sea surface temperature anomalies in the South China Sea during mature phase of ENSO 被引量:1
5
作者 丘福文 潘爱军 +2 位作者 张善武 查晶 孙豪为 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第3期577-584,共8页
Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns ... Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS. 展开更多
关键词 sea surface temperature (SST) anomalies E1 Nifio/Southern Oscillation (ENSO) South China sea (SCS)
下载PDF
Sea surface temperature anomaly in the tropical North Atlantic during El Nino decaying years
6
作者 Xinyu Duan Feng Xue Fei Zheng 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期14-19,共6页
Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this... Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this period.The composite result for 10 El Nino events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Nino event and persists until summer.In general,the anomaly is associated with three factors-namely,El Nino,the North Atlantic Oscillation(NAO),and a long-term trend,leading to an increase in local SST up to 0.4℃,0.3℃,and 0.35℃,respectively.A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño,as well as the local SST in the preceding winter,which may involve a long-term trend signal.In addition,the lead-lag correlation shows that the NAO leads the TNA SST by 2-3 months.By comparing two years with an opposite phase of the NAO in winter(i.e.,1992 and 2010),the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly.A negative phase of the NAO in winter will reinforce the El Nino forcing substantially,and vise versa.In other words,the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Nino.Therefore,the combined effects of El Nino and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend. 展开更多
关键词 Tropical North Atlantic sea surface temperature anomaly North Atlantic Oscillation El Nino
下载PDF
Experiments in numerical modelling of the Pacific sea surface temperature anomalies
7
作者 Zhang Ronghua and Wang Wanqiu Institute of Atmospheric Physics, Academia Sinica, Beijing 100080, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第4期509-524,共16页
By using the atmosphere-ocean coupled model (CGCM) which is composed of a 2-level global atmospheric general circulation model and a 4-layer Pacific oceanic general circulation model developed in the Institute of Atmo... By using the atmosphere-ocean coupled model (CGCM) which is composed of a 2-level global atmospheric general circulation model and a 4-layer Pacific oceanic general circulation model developed in the Institute of Atmospheric Physics of Chinese Academy of Sciences, and two model climatological fields got from the two independent models' numerical integrations respectively, the Pacific sea surface temperature anomalies (SSTA) from 1988 to 1989 are simulated in this paper with observed atmospheric general circulation data and sea surface temperature fields as initial conditions and monthly coupling scheme. In order to remove systematic biases of the model climatological fields, interaction variables between atmosphere and ocean are also corrected simultaneously. The experiments show that the simulation results can be improved effectively if these interaction variables are corrected in spite of the fact that there always exist systematic biases in independent numerical simulations of atmospheric part and oceanic part within CGCM. The basic characteristics of the observed Pacific SSTA in September and October 1988 have been simulated by using the correction scheme, such as the negative SSTA domain in the whole E-quatorial Pacific east to 150°E and the positive SSTA domain in the Western Pacific, the northern subtropical Pacific and nearly the whole Southern Pacific. Further numerical simulations show that the model can simulate not only the SSTA in the Pacific and its seasonal variations but also its interannual changes (for example, La Nino event in the Equatorial Pacific terminated after May 1989) to a certain degree. Furthermore, some problems existing in experiment processes and what we shoud do in the following stage are also discussed and analysed in this paper. 展开更多
关键词 Experiments in numerical modelling of the Pacific sea surface temperature anomalies ssta
下载PDF
Sea Surface Temperature Anomaly and Precipitation Distribution in the Alagoas State of the Brazilian Northeast
8
作者 I. Kulikova N. Fedorova +1 位作者 V. Levit E. S. Cordeiro 《Natural Science》 2014年第14期1159-1178,共20页
Precipitation data of 17 pluviometrical stations in the Alagoas State of the Brazilian Northeast and global spatial distribution of the Sea Surface Temperature Anomaly (SSTA) were analyzed for the period of 1981-2007.... Precipitation data of 17 pluviometrical stations in the Alagoas State of the Brazilian Northeast and global spatial distribution of the Sea Surface Temperature Anomaly (SSTA) were analyzed for the period of 1981-2007. Techniques of constructing composite charts for SSTA fields are used to study the interrelation between the ocean thermal state with precipitation more than 50 mm/24 h, 20 mm/24 h or without precipitation for six ambient regions of the state. The student test is used for estimating statistical characteristics of the composites. Synoptic-scale pattern analyses of the composites reveal strikingly different spatial distribution of SSTA within each composite. The El Ni&#241;o Southern Oscillation cycle refers to the coherent, large-scale fluctuation of ocean temperatures. At the highest ambient regions during heavy precipitation days, more intensive SSTA was observed. The lowest anomalies were observed for all types of precipitation in the semi-arid region. Quantile analyses of NCEP/NCAR indexes of SSTA distribution, such as NATL, SATL, TROP and RNASA were used too. Positive SSTA values in tropical regions are associated with the highest possibility of precipitation formation. The SST interhemispheric north-south gradient in equatorial regions of the North and South Atlantic has direct influence on the precipitation formation in the Alagoas State. 展开更多
关键词 Precipitation BRAZILIAN NORTHEAST sea surface temperature anomaly SST INTERHEMISPHERIC GRADIENT
下载PDF
The effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties 被引量:8
9
作者 Qian Yongfu Department of Atmospheric Sciences, Nanjing University, Nanjing 210008, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第4期535-547,共13页
A modified and improved primitive equation numerical model with p-sigma incorporated vertical coordinates is used to simulate the effects of different sea surface temperature distributions over the western Pacific on ... A modified and improved primitive equation numerical model with p-sigma incorporated vertical coordinates is used to simulate the effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties. The different sea surface temperature (SST) distributions are automatically generated in the time integrations by using two different SST models, one of which is called the deep ocean model (DOM) and the other the shallow ocean model (SOM). The SST generated by the DOM has the distribution pattern of the initial SST which is similar to the pattern in the cold water years over the western Pacific, while the SST generated by the SOM has the pattern similar to that in the warm water years. The differences between the experimental results by using DOM and SOM are analyzed in detail. The analyses indicate that the most basic and important characteristics of the summer monsoon climate can be simulated successfully in both experiments, that means the climatic properties in the monsoonal climate regions are mainly determined by the seasonal heating, the contrast between the land and the sea, the topography, and the physical properties of the underlying surfaces. However, the differences between the two experiments tell us that the climatic properties in the summer monsoon regions in the cold water year and the warm water year do differ from each other in details. In the warm water year, the thermal contrast between the land and the sea becomes weaker. Over the warm water area, the upward motions are induced and the dynamical conditions favorable for the convective activities are formed, the Somali low-level cross equatorial current is somewhat weakened, while the cross equatorial currents, east of 90°E, are strongly strengthened, the precipitation amount in the tropical regions largely increases, and the precipitation over the coastal regions increases, too. However the precipitation over the southeast China and its coastal area decreases. The precipitation amount mainly depends on the strength of the convective activity. 展开更多
关键词 sea surface temperature anomaly MONSOON climate modelling computational models of SST
下载PDF
Long-term changes in sea surface temperature(SST)within the southern Levantine Basin 被引量:1
10
作者 Tarek M.El-Geziry 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期27-33,共7页
Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern bor... Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin.The analysis is based on monthly SST data for the period 1948-2018.The southern Levantine Basin has undergone SST increase,during the last 71 years.In this study,a consistent warming trend has been found for the analysed SST data series,with a rate of 0.04℃/a,i.e.,0.4℃/(10 a).From 1975 to 1991 the mean annual SST was 17.1℃,and this increased to be 19.2℃,over the period 2002-2018.Results revealed two opposite trends of variability:a decreasing trend(−0.06℃/a)over the period 1975-1991,and an increasing trend(0.2℃/a)from 2002 to 2018.Over the period 1948-2018,positive mean annual SST anomalies had an average of 1.8℃,and negative anomalies had an average of−1.1℃.The lowest SST total increase was found from January to April,with values about 0.03℃,while the highest warming appeared from June to September.The driving mechanisms behind the SST changes need to be more investigated,to understand the future trends and impacts of climate change in the Levantine Basin. 展开更多
关键词 Mediterranean sea Levantine Basin sea surface temperature anomaly trends WARMING
下载PDF
The low frequency oscillations of the sea surface temperature in the Equatorial Eastern Pacific and El Nino formation
11
作者 Zhou Faxiu and Yu Shenyu Ocean University of Oingdao, Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1989年第4期521-533,共13页
-In this paper the variations of the sea surface temperature anomalies (SSTA) in the Equatorial Eastern Pacific are analysed. The results show that there are two peaks in the spectrum. One is the low frequency oscilla... -In this paper the variations of the sea surface temperature anomalies (SSTA) in the Equatorial Eastern Pacific are analysed. The results show that there are two peaks in the spectrum. One is the low frequency oscillation with a period of 3 - 5 years, and the other is the quasi-biennial oscillation. The former shows a westward migration in the warm episode of SSTA and the latter has the opposite trend. The El Nino events will be formed while the two frquency bands are in phase in the warming stage of SSTA in the Equatorial Eastern Pacific 展开更多
关键词 Nino EI ssta The low frequency oscillations of the sea surface temperature in the Equatorial Eastern Pacific and El Nino formation EL
下载PDF
A DIAGNOSTIC ANALYSIS OF AIR TEMPERATURE ANOMALY MODE OVER CHINA IN 2009/2010 WINTER BASED ON GENERALIZED EQUILIBRIUM FEEDBACK ASSESSMENT(GEFA) METHOD 被引量:1
12
作者 江志红 吴燕珠 +2 位作者 刘征宇 温娜 赵灿 《Journal of Tropical Meteorology》 SCIE 2015年第2期121-130,共10页
By using the observed monthly mean data over 160 stations of China and NCAR/NCEP reanalysis data, the generalized equilibrium feedback assessment(GEFA) method, combined with the methods of EOF analysis, correlation an... By using the observed monthly mean data over 160 stations of China and NCAR/NCEP reanalysis data, the generalized equilibrium feedback assessment(GEFA) method, combined with the methods of EOF analysis, correlation and composite analysis, is used to explore the influence of different SST modes on a wintertime air temperature pattern in which it is cold in the northeast and warm in the southwest in China. The results show that the 2009/2010 winter air temperature oscillation mode between the northern and southern part of China is closely related to the corresponding sea surface temperature anomalies(SSTA) and its associated atmospheric circulation anomalies. Exhibiting warming in Northeast China and cooling in Southwest China, the mode is significantly forced by the El Nio mode and the North Atlantic SSTA mode, which have three poles. Under the influence of SSTA modes, the surface northerly flow transported cold air to North and Northeast China, resulting in low temperatures in the regions. Meanwhile, the mid-latitude westerlies intensify and the polar cold air stays in high latitudes and cannot affect the Southwest China, resulting in the warming there. 展开更多
关键词 generalized equilibrium feedback assessment sea surface temperature anomalies atmospheric circulation
下载PDF
Effects of Sea Surface Temperature Anomalies off the East Coast of Japan on Development of the Okhotsk High 被引量:7
13
作者 魏东 王亚非 董敏 《Acta meteorologica Sinica》 SCIE 2007年第2期234-244,共11页
The study examined effects of sea surface temperature anomalies (SSTAs) off the east coast of Japan on the blocking high over the Okhotsk Sea in June by diagnostic analysis and numerical simulation. Firstly, based o... The study examined effects of sea surface temperature anomalies (SSTAs) off the east coast of Japan on the blocking high over the Okhotsk Sea in June by diagnostic analysis and numerical simulation. Firstly, based on 500-hPa geopotential height fields, the Okhotsk high index (OKHI) for June from 1951 to 2000 is calculated and analyzed. The result indicates that the OKHI has obvious inter-annual and inter-decadal vaxiations, and there are 9 yr of high OKHI and 8 yr of low OKHI in 50 yr. Secondly, by using the OKHI, the relationship between the Okhotsk high and the 500-hPa geopotential height anomaly is investigated. The results indicate that the "+-+" pattern of geopotential height anomaly crossing Eurasia in the mid-high latitudes and the "+-" pattern of geopotential height anomaly from high to low latitudes over East Asia are in favor of the formation and maintenance of the Okhotsk high. The relationship between the OKHI and the SSTA over the North Pacific is investigated in early summer by using correlation and composite analysis. We found that when the blocking circulation over the Okhotsk Sea occurs, there is an obvious negative SSTA off the east coast of Japan in early summer. We simulated the effects of the negative SSTA of east coast of Japan on the atmospheric circulation anomaly over East Asia through the control and sensitivity experiments using NCAR CAM3 model in order to confirm our analysis results. The simulation shows that the negative SSTA off the east coast of Japan results in the significant positive 40 gpm 500-hPa geopotential height anomaly over the Okhotsk Sea and the negative anomalies off the east coast of Japan which might contribute to the formation and development of the Okhotsk high in June. 展开更多
关键词 Okhotsk high sea surface temperature anomaly (ssta numerical simulation
原文传递
NUMERICAL EXPERIMENTS OF THE EFFECTS OF SEA SURFACE TEMPERATURE ANOMALIES OVER THE PACIFIC ON PRECIPITATION IN 1991 被引量:3
14
作者 王谦谦 钱永甫 +1 位作者 徐海明 葛朝霞 《Acta meteorologica Sinica》 SCIE 1995年第2期207-214,共8页
A zonal domain,primitive equation model is used in this paper to study the influences of the main sea surface tem- perature anomaly(SSTA)areas over the Pacific on precipitation in 1991.Some numerical experiments are m... A zonal domain,primitive equation model is used in this paper to study the influences of the main sea surface tem- perature anomaly(SSTA)areas over the Pacific on precipitation in 1991.Some numerical experiments are made and the mechanisms of the influences are discussed.The results show that the influences of the SSTA are mainly confined within the tropical and the subtropical regions.The direct effect of the SSTA is to change the exchanges of the sensible heat and the water vapour between the air and the sea,through the consequent changes of temperature and the flow fields and the feedback process of condensation,the SSTA finally affects precipitation. 展开更多
关键词 sea surface temperature anomaly(ssta) changes in precipitation numerical modeling
原文传递
The mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of Western Pacific 被引量:1
15
作者 CAO Jie YANG RuoWen +1 位作者 YOU YaLei HUANG Wei 《Science China Earth Sciences》 SCIE EI CAS 2009年第11期1864-1870,共7页
Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western ... Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western Pacific using an improved high truncated spectral model. Our results show that the wave-wave interaction and the wave-mean flow interactions are weaker in the inner dynamic process of atmospheric circulation, when atmospheric circulation is forced by the sea surface temperature of El Ni-o pattern. With the external thermal forcing changed from winter to summer pattern, the range of ridgeline surface of western Pacific moving northward is smaller, which causes the ridgeline surface of western Pacific on south of normal. On the contrary, the wave-wave interaction and the wave-mean flow interaction are stronger, when atmospheric circulation is forced by the sea surface temperature of La Ni-a pattern. With the external thermal forcing turning from winter to summer pattern, the ridgeline surface of western Pacific shifts northward about 19 latitude degrees, which conduces the ridgeline surface of western Pacific on north of normal. After moving to certain latitude, the ridgeline surface of western Pacific oscillates with the most obvious 30-60 d period and the 4°-7° amplitude. It is one of the important reasons for the interannual variation of ridgeline surface of Western Pacific that the at- mospheric inner dynamical process forced out by different sea surface temperature anomaly pattern is different. 展开更多
关键词 sea surface temperature anomaly ridgeline surface of the WESTERN PACIFIC wave-wave INTERACTION wave-mean flow INTERACTION
原文传递
Possible Causes for the Persistence Barrier of SSTA in the South China Sea and the Vicinity of Indonesia 被引量:1
16
作者 赵霞 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1125-1136,共12页
The persistence barrier refers to the lag correlation of sea surface temperature anomalies (SSTA) showing a rapid and significant decline in a specific season, regardless of the starting month. This implies that the... The persistence barrier refers to the lag correlation of sea surface temperature anomalies (SSTA) showing a rapid and significant decline in a specific season, regardless of the starting month. This implies that there is a decrease in forecast skill for SSTA in this specific season. This paper investigates the possible causes for the persistence barrier of SSTA in the South China Sea (SCS) and its adjacent regions from the perspective of interannuallinterdecadal time scales. The results show that the persistence barrier of SSTA exists not only in the SCS, but also in the vicinity of Indonesia south of the equator. The SCS barrier occurs around October-November, while the occurrence of the barrier in the Indonesia region is around November-December. For these two regions, the occurrence of the persistence barrier is closely associated with the interdecadal variability of SSTA, as well as the interannual variability. The persistence barriers in the SCS and the Indonesia region do not exist alone if the interdecadal variability is not considered, because SSTA have a short memory of less than 4 months, regardless of the starting month. Moreover, the influence of the interdecadal variability of SSTA on the persistence barrier of SSTA in the SCS and the Indonesia region may be associated with SSTA in the Indian Ocean and the western Pacific, but is not closely associated with the Pacific Decadal Oscillation. However, compared with the spring persistence barrier (SPB) of ENSO, the close relationship between the persistence barriers in the SCS and the Indonesia region and the interdecadal variability is unique, since the ENSO SPB is not significantly affected by such variability. In addition, although the persistence barriers in both the SCS and the Indonesia region are quite obvious in strong ENSO cases, the interdecadal variability of SSTA also plays a non-negligible role in this relationship. 展开更多
关键词 South China sea sea surface temperature persistence barrier interannualinterdecadal vari-ability of ssta
下载PDF
A global process-oriented sea surface temperature anomaly dataset retrieved from remote sensing products 被引量:1
17
作者 Cunjin Xue Yangfeng Xu Yawen He 《Big Earth Data》 EI 2022年第2期179-195,共17页
From the time that it first develops,a sea surface temperature anomaly(SSTA)will develop in space and time until it dissipates.Although many SST products are available,great challenges are still faced when attempting ... From the time that it first develops,a sea surface temperature anomaly(SSTA)will develop in space and time until it dissipates.Although many SST products are available,great challenges are still faced when attempting to directly explore the evolution of SSTAs.To address some of these problems,in this study,we developed a global SSTA dataset that included details of the spatial structure of SSTAs and their temporal evolution.This dataset is called GDPoSSTA.GDPoSSTA is comprised of three datasets and two relationship files and covers the period from January 1982 to December 2009.The three datasets are in SHP format and consist of a dataset of processed object-oriented SSTAs named DSPOSSTA,a dataset of sequenced object-oriented SSTA series named DSSOSSTA,and a dataset of variation object-oriented SSTA named DSVOSSTA.The two relationship files,which are in CSV format,store the evolving behavior of the SSTA sequence object and SSTA variation objects.Finally,geographic spatiotemporal statistics are derived for the DSPOSSTA and a comparison of applying TITAN to DSVOSSTA and DSPOSSTA is carried out which demonstrates the feasibility and applicability of GDPoSSTA.The GDPoSSTA dataset is available on ScienceDB platform(http://www.doi.org/10.11922/sciencedb.j00076.00090). 展开更多
关键词 sea surface temperature anomaly global dataset evolution process remote sensing
原文传递
TROPICAL SEA SURFACE TEMPERATURE ANOMALY AND INDIAN SUMMER MONSOON
18
作者 朱亚芬 钱维宏 叶谦 《Acta meteorologica Sinica》 SCIE 1999年第2期154-163,共10页
The time series of the sea surface temperature(SST)anomaly,covering the eastern (western)equatorial Pacific,central Indian Ocean,Arabian Sea.Bay of Bengal and South China Sea(SCS),have been analyzed by using wavelet t... The time series of the sea surface temperature(SST)anomaly,covering the eastern (western)equatorial Pacific,central Indian Ocean,Arabian Sea.Bay of Bengal and South China Sea(SCS),have been analyzed by using wavelet transform.Results show that there exists same interdeeadal variability of SST in the tropical Pacific and tropical Indian Ocean,and also show that the last decadal abrupt change occurred in the 1970s.On the interannual time scale,there is a similar interannual variability among the equatorial central Indian Ocean and the adjacent three sea basins(Arabian Sea.Bay of Bengal and South China Sea).but the SST interannual changes of the Indian Ocean lagged 4—5 months behind that of the equatorial central-east Pacific.Meanwhile, the interannual variability and long-range change between SST anomaly and Indian summer monsoon rainfall in recent decades have been explained and analyzed.It indicates that there existed a wet(dry)period in India when the tropical SST was lower(higher)than normal,but there was a lag of phase between them. 展开更多
关键词 SST(sea surface temperature)anomaly VARIABILITY monsoon rainfall wavelet transform
原文传递
Revisiting the Seasonal Evolution of the Indian Ocean Dipole from the Perspective of Process-Based Decomposition
19
作者 ZHANG Guangli FAN Hanjie +3 位作者 HUANG Ke LONG Tong SONG Wei XIE Qiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1453-1463,共11页
The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely i... The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely investigated.The SSTA tendencies over the two centers of the IOD peak in September-October-November are of different monthly amplitudes.The SSTA tendency over the west pole is small before June-July-August but dramatically increases in July-August-September.Meanwhile,the SSTA tendency over the east pole gradually increases before June-July-August and decreases since then.The growth rate attribution of the SSTAs is achieved by examining the roles of radiative and non-radiative air-sea coupled thermodynamic processes through the climate feedback-response analysis method(CFRAM).The CFRAM results indicate that oceanic dynamic processes largely contribute to the total SSTA tendency for initiating and fueling the IOD SSTAs,similar to previous studies.However,these results cannot ex-plain the monthly amplitudes of SSTA tendency.Four negative feedback processes(cloud radiative feedback,atmospheric dynamic processes,surface sensible,and latent heat flux)together play a damping role opposite to the SSTA tendency.Nevertheless,the sea surface temperature-water vapor feedback shows positive feedback.Specifically,variations in SSTAs can change water vapor con-centrations through evaporation,resulting in anomalous longwave radiation that amplifies the initial SSTAs through positive feedback.The effect of water vapor feedback is well in-phase with the monthly amplitudes of SSTA tendency,suggesting that the water vapor feedback might modulate the seasonally dependent SSTA tendency during the development of the IOD. 展开更多
关键词 Indian Ocean Dipole climate feedback-response analysis method growth rate of the sea surface temperature anomaly seasonally dependent sea surface temperature anomaly water vapor feedback
下载PDF
NUMERICAL EXPERIMENTS FOR THE INFLUENCE OF ANOMALOUS SEA SURFACE TEMPERATURE ON THE SOUTH CHINA SEA SUMMER MONSOON
20
作者 马淑杰 孙淑清 布和朝鲁 《Acta meteorologica Sinica》 SCIE 2003年第S1期171-185,共15页
Several sensitivity experiments are done by using the T42L9 global spectral model developed by IAP for investigating the influence of sea surface temperature anomaly (SSTA) in different regions on the South China Sea ... Several sensitivity experiments are done by using the T42L9 global spectral model developed by IAP for investigating the influence of sea surface temperature anomaly (SSTA) in different regions on the South China Sea Summer Monsoon (SCSM).It shows that when SSTA presents a La Nina pattern,the onset date of SCSM will be earlier and the convection in the South China Sea region will be consistently stronger,and vice versa.Specially,SSTA in the central and eastern Pacific plays a main role in the variation of the onset and the strength of SCSM.When SSTA of this area is lower,the onset of SCSM comes earlier,the strength of SCSM becomes stronger, otherwise,the conclusion is contrary.The influence of SSTA in the tropical West Pacific on the onset date of SCSM is not clear,but it strongly affects the strength of the monsoon.The warmer SST in this region will bring about a stronger SCSM,and vice versa.The relationship between SSTA in the tropical western Indian Ocean and SCSM has been investigated.It is found that the SSTA in this region can influence the onset of SCSM,and plays a role similar to the one in the eastern Pacific.The above results also reflect that the activity of SCSM has a close relationship with the El Nino or La Nina events.The onset and the strength change of the SCSM are obviously influenced by the heating status anomaly on the tropic Pacific through the Walker circulation. 展开更多
关键词 ssta (sea surface temperature anomaly) SCSM (South China sea Summer Monsoon) numerical experiment
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部