Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
Multibarrier systems are commonly proposed for effective isolation of highly radioactive waste (HLW). Presently considered concepts take the host rock as a barrier claiming it to retard migration of possibly released ...Multibarrier systems are commonly proposed for effective isolation of highly radioactive waste (HLW). Presently considered concepts take the host rock as a barrier claiming it to retard migration of possibly released radionuclides from HLW containers to the biosphere. This capacity is small unless water-bearing fracture zones intersecting the blasted waste-containing tunnels and excavation-disturbance zones around them can be sealed by grouting and construction of bulkheads, but this is effective only for a very limited period of time as explained in the paper. The disturbed zones thence make the entire repository serve as a continuous hydraulic conductor causing quick transport of released radionuclides up to the biosphere. The dilemma can be solved by accepting the shortcircuiting function of the disturbed zones along the tunnels on the condition that totally tight waste containers be used. Deep holes bored in the site selection phase through the forthcoming repository can be effective pathways for radionuclides unless they are properly sealed. They are small-scale equivalents of tunnels but do not have any excavation damage and can be effectively sealed by using clay and concrete of new types. Applying this principle to very deep boreholes with a diameter of a few decimeters would make it possible to safely store slim, tight HLW canisters for any period of time.展开更多
In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investi...In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,展开更多
The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked sample...The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.展开更多
This report describes a series of experiments where CO2-saturated-brine flow through fractured seal rocks from three sites within the continental United States that are being considered, or are actively being used, fo...This report describes a series of experiments where CO2-saturated-brine flow through fractured seal rocks from three sites within the continental United States that are being considered, or are actively being used, for CCUS pilot studies were examined. The experiments were performed over multiple weeks by injecting CO2 saturated brine through fractured samples, and were scanned with a computed tomography scanner at regular intervals over the course of the experiment while kept at representative reservoir pressures. The goal was to evaluate the change in the fracture flow that would result from a CO2 leakage event so that accurate relationships can be implemented in numerical models to assess risk. Of the three different formations studied in this series of fractured seal formation CO2-saturated-brine flow through experiments, only one formation had a reaction that was greater than the noise in the system. Reactions within the Tuscaloosa claystone sample appeared to reduce the transmissivity of the fracture slightly over the 39 day experiment. The change in the geometry of the fracture was not great enough to view with the medical CT images that were captured during the experiment. All other tests showed a minimal amount of change in the fracture and fracture flow properties.展开更多
Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:...Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
文摘Multibarrier systems are commonly proposed for effective isolation of highly radioactive waste (HLW). Presently considered concepts take the host rock as a barrier claiming it to retard migration of possibly released radionuclides from HLW containers to the biosphere. This capacity is small unless water-bearing fracture zones intersecting the blasted waste-containing tunnels and excavation-disturbance zones around them can be sealed by grouting and construction of bulkheads, but this is effective only for a very limited period of time as explained in the paper. The disturbed zones thence make the entire repository serve as a continuous hydraulic conductor causing quick transport of released radionuclides up to the biosphere. The dilemma can be solved by accepting the shortcircuiting function of the disturbed zones along the tunnels on the condition that totally tight waste containers be used. Deep holes bored in the site selection phase through the forthcoming repository can be effective pathways for radionuclides unless they are properly sealed. They are small-scale equivalents of tunnels but do not have any excavation damage and can be effectively sealed by using clay and concrete of new types. Applying this principle to very deep boreholes with a diameter of a few decimeters would make it possible to safely store slim, tight HLW canisters for any period of time.
基金funded by the German Federal Ministry for Economic Affairs and Energy(BMWi)under contract number02E10377
文摘In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,
基金co-funded by the European Commission (EC) as part of the sixth Euratom research and training Framework Programme (FP6) on nuclear energy under contract FP6-036449by the German Federal Ministry of Economics and Technology (BMWi) under contracts 02E10045 and 02E10377
文摘The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.
文摘This report describes a series of experiments where CO2-saturated-brine flow through fractured seal rocks from three sites within the continental United States that are being considered, or are actively being used, for CCUS pilot studies were examined. The experiments were performed over multiple weeks by injecting CO2 saturated brine through fractured samples, and were scanned with a computed tomography scanner at regular intervals over the course of the experiment while kept at representative reservoir pressures. The goal was to evaluate the change in the fracture flow that would result from a CO2 leakage event so that accurate relationships can be implemented in numerical models to assess risk. Of the three different formations studied in this series of fractured seal formation CO2-saturated-brine flow through experiments, only one formation had a reaction that was greater than the noise in the system. Reactions within the Tuscaloosa claystone sample appeared to reduce the transmissivity of the fracture slightly over the 39 day experiment. The change in the geometry of the fracture was not great enough to view with the medical CT images that were captured during the experiment. All other tests showed a minimal amount of change in the fracture and fracture flow properties.
基金funding by the German Federal Ministry of Economics and Technology (BMWi) under contract No.02E10377the French National Radioactive Waste Management Agency (Andra)
文摘Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.