Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat...Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.展开更多
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sands...Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sandstone,Permian mudstone and Permian siltstone were collected and tested using experimental methods of microstructure observation,pore structure measurement and diffusion properties determination.Results indicate that with denser structures,lower porosities,much more developed micropores/transition pores and higher pore/throat ratios,mudstone and siltstone have the more ideal sealing capacities for CBM preservation when comparing to other kinds of caprocks;the methane diffusion coefficients of mudstone/siltstone are about 6 times higher than sandstone and almost 90 times higher than clayrock/redbeds.To further estimate the CBM escape through caprocks,a one-dimensional CBM diffusion model is derived.Modeling calculation result demonstrates that under the same thickness,the CBM sealing abilities of mudstone/siltstone are almost 100 times higher than those of clayrock/redbeds,and nearly 17 times higher than sandstone,which indicates that the coal seam below caprocks like clayrock,redbeds or sandstone may suffer stronger CBM diffusion effect than that below mudstone or siltstone.Such conclusion is verified by the case study from III3 District,Xutuan Colliery,where the coal seam capped by Paleogene redbeds has a much lower CBM content than that capped by the Permian strata like mudstone,siltstone and sandstone.展开更多
文摘Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations.
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金Project(2016YFC0801608) supported by the National Key Research and Development Plan,ChinaProject(51574148) supported by the National Natural Science Foundation of China
文摘Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sandstone,Permian mudstone and Permian siltstone were collected and tested using experimental methods of microstructure observation,pore structure measurement and diffusion properties determination.Results indicate that with denser structures,lower porosities,much more developed micropores/transition pores and higher pore/throat ratios,mudstone and siltstone have the more ideal sealing capacities for CBM preservation when comparing to other kinds of caprocks;the methane diffusion coefficients of mudstone/siltstone are about 6 times higher than sandstone and almost 90 times higher than clayrock/redbeds.To further estimate the CBM escape through caprocks,a one-dimensional CBM diffusion model is derived.Modeling calculation result demonstrates that under the same thickness,the CBM sealing abilities of mudstone/siltstone are almost 100 times higher than those of clayrock/redbeds,and nearly 17 times higher than sandstone,which indicates that the coal seam below caprocks like clayrock,redbeds or sandstone may suffer stronger CBM diffusion effect than that below mudstone or siltstone.Such conclusion is verified by the case study from III3 District,Xutuan Colliery,where the coal seam capped by Paleogene redbeds has a much lower CBM content than that capped by the Permian strata like mudstone,siltstone and sandstone.