With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more a...With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.展开更多
Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its pot...Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its potential is a relatively new research topic.In this paper,the authors provide an overview of the latest research related to BEF.An introduction to BEF is provided,methods developed for identifying and characterizing BEF are presented,and several key influencing factors are identified.The overview also covers various aggregation methods to scale up BEF impacts and service-oriented solutions for enabling BEF applications in different energy sectors.This work lays the groundwork for designing and developing seamless integration strategies for BEF use in both present and future energy systems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41606112,61103196,61379127,61379128)the National High Technology Research and Development Program 863(No.2013AA09A506)
文摘With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.
文摘Buildings have both high as well as flexible energy demands and play an important role in the energy internet solution.The buildings’energy flexibility(BEF)is a widely recognized concept;however,how to unlock its potential is a relatively new research topic.In this paper,the authors provide an overview of the latest research related to BEF.An introduction to BEF is provided,methods developed for identifying and characterizing BEF are presented,and several key influencing factors are identified.The overview also covers various aggregation methods to scale up BEF impacts and service-oriented solutions for enabling BEF applications in different energy sectors.This work lays the groundwork for designing and developing seamless integration strategies for BEF use in both present and future energy systems.