期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
Theoretical analysis and engineering application of controllable shock wave technology for enhancing coalbed methane in soft and low‑permeability coal seams
1
作者 Guodong Qiao Zegong Liu +4 位作者 Yongmin Zhang Changping Yi Kui Gao Shigui Fu Youzhi Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期123-142,共20页
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con... Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams. 展开更多
关键词 CSW antireflection in coal seams CBM extraction enhancement Soft and low-permeability coal seams Field test
下载PDF
基于SEAMS评估的针对性护理干预在老年高血压患者的血压控制及用药依从性的影响 被引量:1
2
作者 吴秀琴 钱彐晴 龚林 《黑龙江医药科学》 2024年第2期84-85,89,共3页
目的:探讨基于用药自我效能量表(SEAMS)评估的针对性护理对老年高血压的应用效果。方法:纳入2021年1月至2023年8月于上饶市人民医院门诊收治的65例老年高血压患者,根据抛掷法分为SEAMS组(基于SEAMS评估的针对性护理)33例、常规组(一般护... 目的:探讨基于用药自我效能量表(SEAMS)评估的针对性护理对老年高血压的应用效果。方法:纳入2021年1月至2023年8月于上饶市人民医院门诊收治的65例老年高血压患者,根据抛掷法分为SEAMS组(基于SEAMS评估的针对性护理)33例、常规组(一般护理)32例,干预3个月。比较两组血压控制、用药依从性、自我管理能力、健康状况。结果:SEAMS组干预后血压值较常规组低(P<0.05),SEAMS组血压控制率高于常规组(P<0.05),SEAMS组高血压患者服药依从性自我效能量表(MASES-R)评分、SEAMS评分、高血压病人自我管理量表评分、自测健康评定量表评分较常规组高(P<0.05)。结论:对老年高血压患者行基于SEAMS评估的针对性护理干预可控制血压水平,提升用药依从性、自我管理能力,改善健康状况。 展开更多
关键词 seams 针对性护理 老年高血压
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
3
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Insights into carbon dioxide sequestration into coal seams through coupled gas flow-adsorption-deformation modelling
4
作者 Hywel Thomas Min Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期26-40,共15页
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this... Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams. 展开更多
关键词 CO_(2)geological storage Coal seam ADSORPTION Desorption hysteresis
下载PDF
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams
5
作者 Haifeng Zhao Pengyue Li +1 位作者 Xuejiao Li Wenjie Yao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期78-102,共25页
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ... Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams. 展开更多
关键词 Indirect fracturing Roof of coal seam Fracture propagation and evolution Coalbed methane Cohesive element method Combination weight method
下载PDF
Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams
6
作者 Xingping Lai Huicong Xu +4 位作者 Pengfei Shan Qinxin Hu Weixi Ding Shangtong Yang Zhongming Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期929-942,共14页
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t... In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams. 展开更多
关键词 steeply inclined coal seam localized deformation mechanism of induced rockburst prevention and control of rockburst
下载PDF
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
7
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 Extra-Thick Coal Seam High-Intensity Mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
GMAS、MMAS-8和SEAMS评估慢性病病人用药依从性效能的比较 被引量:22
8
作者 兰琨熠 张清 沈悦好 《护理研究》 北大核心 2023年第13期2322-2328,共7页
目的:比较普适性药物依从性量表(GMAS)、Morisky服药依从性测量量表(MMAS-8)、合理用药自我效能量表(SEAMS)在慢性病病人中的应用效果,为临床选择有价值的慢性病用药依从性评估工具提供参考。方法:于2021年10月—2022年2月选取在天津市... 目的:比较普适性药物依从性量表(GMAS)、Morisky服药依从性测量量表(MMAS-8)、合理用药自我效能量表(SEAMS)在慢性病病人中的应用效果,为临床选择有价值的慢性病用药依从性评估工具提供参考。方法:于2021年10月—2022年2月选取在天津市3所医疗机构就诊的270例成年慢性病病人为研究对象,采用一般资料调查表、GMAS、MMAS-8、SEAMS进行用药依从性评估,并以MAQ作为效度评价标准,采用受试者工作特征(ROC)曲线、Bayes判别分析、Kappa一致性检验和阳性似然比对3种慢性病用药依从性评估工具进行比较。结果:以MAQ为评价标准,270例病人中用药依从性差者122例(45.2%)。GMAS、MMAS-8、SEAMS评分的ROC曲线下面积(AUC)分别为0.981,0.984,0.917,灵敏度分别为0.987,0.993,0.676,特异度分别为0.926,0.943,0.951,约登指数分别为0.913,0.936,0.627(P<0.001)。GMAS、MMAS-8和SEAMS对评估慢性病病人用药依从性的交叉检验准确率分别为89.6%、97.0%和80.7%,与MAQ评估结果的一致性检验Kappa值分别为0.917,0.940,0.608(P<0.001),阳性似然比分别为13.367,17.303,13.734。结论:3种量表在评估慢性病病人是否存在用药依从性不佳风险时均有较高价值,其中MMAS-8评估慢性病病人用药依从性的效能最高,GMAS量表次之,最后是SEAMS,提示研究人员可根据研究对象个性化特点和研究目的针对性地选择评估工具,有助于准确识别用药依从性不佳的慢性病病人并早期开展干预。 展开更多
关键词 慢性病 用药依从性 普适性药物依从性量表(GMAS) Morisky服药依从性测量量表(MMAS-8) 合理用药自我效能量表(seams)
下载PDF
Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams 被引量:61
9
作者 Jinhua Wang Bin Yu +4 位作者 Hongpu Kang Guofa Wang Debing Mao Yuntao Liang Pengfei Jiang 《International Journal of Coal Science & Technology》 EI 2015年第2期97-162,共66页
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi... Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed. 展开更多
关键词 Ultra-thick coal seams Top-coal caving mining Large mining height Mining method - Mining equipment Roadway support Safety guarantee
下载PDF
Current status and technical challenges of C_(2)storage in coal seams and enhanced coalbed methane recovery:an overview 被引量:22
10
作者 Xiaochun Li Zhi-ming Fang 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期93-102,共10页
In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emissio... In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emission reduction and coalbed methane recovery enhancement.This paper presents an overview on the current status of research on C_(2)-ECBM in the past two decades,which involves C_(2)storage capacity evaluations,laboratory investigations,modelings and pilot tests.The current status shows that we have made great progress in the ECBM technology study,especially in the understanding of the ECBM mechanisms.However,there still have many technical challenges,such as the definition of unmineable coal seams for C_(2)storage capacity evaluation and storage site characterization,methods for C_(2)injectivity enhancement,etc.The low injectivity of coal seams and injectivity loss with C_(2)injection are the major technique challenges of ECBM.We also search several ways to promote the advancement of ECBM technology in the present stage,such as integrating ECBM with hydraulic fracturing,using a gas mixture instead of pure C_(2)for injection into coal seams and the application of ECBM to underground coal mines. 展开更多
关键词 C_(2)storage in coal seams ECBM PERMEABILITY Hydraulic fracture Gas mixture
下载PDF
Stability control of gob-side entry retained under the gob with close distance coal seams 被引量:10
11
作者 Zizheng Zhang Min Deng +2 位作者 Jianbiao Bai Shuai Yan Xianyang Yu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期321-332,共12页
In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry reta... In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry retaining(GER)under the gob with close distance coal seams(CDCS)is faced with difficulties due to little attention to GER under this condition.This paper focuses on surrounding rock stability control and technical parameters design for GER under the gob with CDCS.The floor rock strata damage characteristics after mining the UCS is first evaluated and the damage factor of the interlayer rock strata below the UCS is also determined.Then,a structural mechanics model of GER surrounding rock is set up to obtain the main design parameters of the side-roadway backfill body(SBB)including the maximum and minimum SBB width calculation formula.The optimal SBB width and the water-to-cement ratio of high water quick-setting material(HWQM)to construct the SBB are determined as 1.2 m and 1.5:1.0,respectively.Finally,engineering trial tests of GER are successfully carried out at#5210 track transportation roadway of Xingwu Colliery.Research results can guide GER design under similar mining and geological conditions. 展开更多
关键词 Gob-side entry retaining Close distance coal seams Damage factor Interlayer rock strata Side-roadway backfill body
下载PDF
Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams 被引量:7
12
作者 Su Ben-Yu Yue Jian-Hua 《Applied Geophysics》 SCIE CSCD 2017年第2期216-224,322,共10页
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when... Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production. 展开更多
关键词 water-conducting fractured zones in coal seams coalfield goaf electrical anisotropy surface roughness formation water resistivity formation pressure
下载PDF
Stress distribution rule of roadway affected by overhead mining in gently inclined coal seams group 被引量:5
13
作者 KANG Qin-rong1, 2, TANG Jian-xin1, 2, HU Hai1, 2, ZHANG Wei-zhong1, 3 1. College of Resource and Environmental Sciences, Chongqing University, Chongqing 400030, China 2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China 3. School of Safety Science and Administration, Zhongnan University of Economics and Law, Wuhan 430074, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期529-535,共7页
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st... In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery. 展开更多
关键词 coal seams group STRESS distribution district RAISE SURROUNDING rock deformation and DESTRUCTION ABUTMENT STRESS
下载PDF
Hydraulic support stability control of fully mechanized top coal caving face with steep coal seams based on instable critical angle 被引量:2
14
作者 屠世浩 袁永 +2 位作者 李乃梁 窦凤金 王方田 《Journal of Coal Science & Engineering(China)》 2008年第3期382-385,共4页
Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam tru... Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled. 展开更多
关键词 steep coal seams instable critical angle support stability fully mechanized top coal caving control technology
下载PDF
Numerical Study on an Applicable Underground Mining Method for Soft Extra-Thick Coal Seams in Thailand 被引量:4
15
作者 Nay Zarlin Takashi Sasaoka +1 位作者 Hideki Shimada Kikuo Matsui 《Engineering(科研)》 2012年第11期739-745,共7页
The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will th... The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”. 展开更多
关键词 Multi-Slice Bord-and-Pillar Method SOFT Extra-Thick Coal seams Numerical Analyses FLAC3D
下载PDF
Hybrid assessment of pre-blasting weakening to horizontal section top coal caving (HSTCC) in steep and thick seams 被引量:4
16
作者 Lai Xingping Shan Pengfei +3 位作者 Cao Jiantao Sun Huan Suo Zhengyong Cui Feng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期31-37,共7页
Horizontal section top-coal(HSTCC)caving offers a powerful method to efficiently excavate rude coal in steep and thick seams,and pre-blasting weakening has a profound effect on pursuing great production,high efficienc... Horizontal section top-coal(HSTCC)caving offers a powerful method to efficiently excavate rude coal in steep and thick seams,and pre-blasting weakening has a profound effect on pursuing great production,high efficiency and good benefit under particular conditions like a small-scale working face with large-scale sectional caving height.+564-level HSTCC working face in B3–6coal seams of Jiangou Colliery in Urumqi was taken as study case for in situ industrial experiment.Total thickness of seams in the study case is about 50.0 m and average angel here is over 83°.In the industrial experiments,at first we adopted continuous charge machine and emulsion matrix explosive to substitute for traditional blasting schemes for specific geological settings in the study case.Hybrid analyses and assessments with blasting crack propagation analysis,abutment pressure monitoring prediction and economical benefit assessment were attributed to be able to attest pre-blasting weakening effects practically.Meanwhile crack propagation analysis after pre-blasting weakening showed that in all triple monitoring bore holes rock masses of top-coal would be fallen into three stages from the bottom up:fracture zone,plastic zone and elastic zone generally,and fracture toughness respectively in correspondent zones was calculated by the analytical formula:0.5616–0.8806,0.6403–0.9541 and0.7535–1.1900 MPa m1/2after pre-blasting weakening.Pressure monitoring prediction and economical benefit assessment also indicated that it was necessary to introduce the pre-blasting weakening with predominant blasting scheme from both views.For excavation in extremely steep and thick coal seams,relevant results would be a useful tool to study the mechanism of pre-blasting weakening both qualitatively and quantitatively. 展开更多
关键词 Pre-blasting weakening HSTCCS teep and thick seams Explosive scheme In situ hybrid monitoring
下载PDF
Research into comprehensive gas extraction technology of single coal seams with low permeability in the Jiaozuo coal mining area 被引量:5
17
作者 Fu Jiangwei Fu Xuehai +2 位作者 Hu Xiao Chen Li Ou Jianchun 《Mining Science and Technology》 EI CAS 2011年第4期483-489,共7页
For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extra... For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area. 展开更多
关键词 Single coal seam with low permeability High risk gas and outburst coal seamstress relaxation zoneComprehensive gas extractionJiaozuo coal mining areaGas emission
下载PDF
Investigation into the deformation of a large span roadway in soft seams and its support technology 被引量:5
18
作者 Fu Jianqiu Feng Chao Shi Jianjun 《Mining Science and Technology》 EI CAS 2011年第4期531-535,共5页
We investigated the deformation failure mechanism of surrounding rock from the aspect of engineering support for a roadway in seams with soft roofs and soft floors and observed the large displacement of the roadway in... We investigated the deformation failure mechanism of surrounding rock from the aspect of engineering support for a roadway in seams with soft roofs and soft floors and observed the large displacement of the roadway in these soft seams.The result shows that the deformation area is quite large,and settlement of the roof is evident and displacement of the side walls is also obvious.We considered rock bolt-cable coupling for roadway support in seams with soft roofs and floors,in which the cable should be fixed at key positions.As well,we designed an optimal scheme to support a roadway in soft seams of the Shizuishan Second Mine in Ningxia,China.Field monitoring results show that bolt-cable coupling support has achieved the aims of roadway stability control and minimizes deformation. 展开更多
关键词 seams with soft roofs and floors Roadway deformation Bolt-cable coupling supportField monitoring
下载PDF
Study on the Theory and Method on Identification of the Mobile Block in the Face-Contacted Blocks Structure in Rocks Between Coal Seams to Mine the Left-over Coal Above the Gob
19
作者 Guorui Feng,Lixun Kang,Xuyan Zhang Institute of Mining Technology,Taiyuan University of Technology,Taiyuan 030024,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期180-180,共1页
In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over co... In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over coal above the gob.In order to probe into the movement law of rock strata and strata control measures,it is very important to identify the mobile block in face-contacted block structure of rocks between coal seams.This paper relies on the thought of block theory to establish appropriate parameter matrix and figure out its discrimination matrix in view of the fact that the block in face-contacted block structure has high intensity and stiffness,the 展开更多
关键词 MOBILE BLOCK ROCKS BETWEEN COAL seams rock mechanics IDENTIFICATION of the MOBILE BLOCK
下载PDF
Study on ascending mining roadway layout of close distance coal seams in deep mine
20
作者 石永奎 莫技 《Journal of Coal Science & Engineering(China)》 2007年第4期493-496,共4页
To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the preconditi... To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the precondition of successful ascending mining. By using "device of leak measuring by blocking up double ends", it detected the height of overburden water flowing fractured zone originated from sub-coal seams mining. Thus it proved that the actual mining roadway of No.2 upper ascending seam was located in the smooth sagging zone. On the basis of analyzing the stress-releasing effect of sub-coal seams mining to upper coal seams by using RFPA software, it analyzed the stability of up-face coal seams and the reasonable location of starting cut in up-face coal seams. It also analyzed the reasonable gateway location in upper coal seams, which ensured the crossheading in upper coal seams out of the effect of sub-coal work face mining by using theory of underground pressure. Meanwhile, the reasonable pillars dimensions in upper coal seams by building the structure mechanics model of stope were researched. It can make the roadway driven along next goaf to be located in low stress zone, and be beneficial to keeping roads stable owing to less stress of surrounding rock. Finally, it tested the rationality of the layout method of roads in upper coal seams by engineering field measurement in 3221 working face. 展开更多
关键词 deep mine close distance coal seams ascending mining RFPA roadway layout mode sublevel dimensions
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部