A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistic...The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.展开更多
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex...Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.展开更多
The use of groups of unmanned aerial vehicles(UAVs) has greatly expanded UAV's capabilities in a variety of applications, such as surveillance, searching and mapping. As the UAVs are operated as a team, it is impor...The use of groups of unmanned aerial vehicles(UAVs) has greatly expanded UAV's capabilities in a variety of applications, such as surveillance, searching and mapping. As the UAVs are operated as a team, it is important to detect and isolate the occurrence of anomalous aircraft in order to avoid collisions and other risks that would affect the safety of the team. In this paper, we present a data-driven approach to detect and isolate abnormal aircraft within a team of formatted flying aerial vehicles, which removes the requirements for the prior knowledge of the underlying dynamic model in conventional model-based fault detection algorithms. Based on the assumption that normal behaviored UAVs should share similar(dynamic) model parameters, we propose to firstly identify the model parameters for each aircraft of the team based on a sequence of input and output data pairs, and this is achieved by a novel sparse optimization technique. The fault states of the UAVs would be detected and isolated in the second step by identifying the change of model parameters.Simulation results have demonstrated the efficiency and flexibility of the proposed approach.展开更多
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
基金supported by the National Natural Science Foundation of China (10472045, 10772078 and 11072108)the Science Foundation of NUAA(S0851-013)
文摘The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.
文摘Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.
基金supported by Fundamental Research Funds for Central Universities of China(No.NS2014090)
文摘The use of groups of unmanned aerial vehicles(UAVs) has greatly expanded UAV's capabilities in a variety of applications, such as surveillance, searching and mapping. As the UAVs are operated as a team, it is important to detect and isolate the occurrence of anomalous aircraft in order to avoid collisions and other risks that would affect the safety of the team. In this paper, we present a data-driven approach to detect and isolate abnormal aircraft within a team of formatted flying aerial vehicles, which removes the requirements for the prior knowledge of the underlying dynamic model in conventional model-based fault detection algorithms. Based on the assumption that normal behaviored UAVs should share similar(dynamic) model parameters, we propose to firstly identify the model parameters for each aircraft of the team based on a sequence of input and output data pairs, and this is achieved by a novel sparse optimization technique. The fault states of the UAVs would be detected and isolated in the second step by identifying the change of model parameters.Simulation results have demonstrated the efficiency and flexibility of the proposed approach.