期刊文献+
共找到698篇文章
< 1 2 35 >
每页显示 20 50 100
Optimal search path planning of UUV in battlefeld ambush scene
1
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush optimal search path planning UUV path Planning Probability of cooperative search
下载PDF
Original optimal method to solve the all-pairs shortest path problem: Dhouib-matrix-ALL-SPP
2
作者 Souhail Dhouib 《Data Science and Management》 2024年第3期206-217,共12页
The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based... The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm. 展开更多
关键词 Artificial intelligence Operations research Combinatorial optimization Graph theory Network model All-pairs shortest paths problem Dhouib-matrix Intelligent networks
下载PDF
Optimizing Connections:Applied Shortest Path Algorithms for MANETs
3
作者 Ibrahim Alameri Jitka Komarkova +2 位作者 Tawfik Al-Hadhrami Abdulsamad Ebrahim Yahya Atef Gharbi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期787-807,共21页
This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del... This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness. 展开更多
关键词 Dijkstra’s algorithm optimization complexity analysis shortest path first comparative algorithm analysis nondeterministic polynomial(NP)-complete
下载PDF
A genetic algorithm for the pareto optimal solution set of multi-objective shortest path problem 被引量:2
4
作者 胡仕成 徐晓飞 战德臣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期721-726,共6页
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ... Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time. 展开更多
关键词 shortest path multi-objective optimization tournament selection pareto optimum genetic algorithm
下载PDF
Optimal search for moving targets with sensing capabilities using multiple UAVs 被引量:11
5
作者 Xiaoxuan Hu Yanhong Liu Guoqiang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期526-535,共10页
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission... This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method. 展开更多
关键词 unmanned air vehicle (UAV) moving target search model predictive control path planning hybrid particle swarm optimization
下载PDF
Integrated Clustering and Routing Design and Triangle Path Optimization for UAV-Assisted Wireless Sensor Networks
6
作者 Shao Liwei Qian Liping +1 位作者 Wu Mengru Wu Yuan 《China Communications》 SCIE CSCD 2024年第4期178-192,共15页
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated... With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%. 展开更多
关键词 Monte-Las search strategy triangle path optimization unmanned aerial vehicles wireless sensor networks
下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
7
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Study on Applying Optimal Path to Land Valuation 被引量:1
8
作者 WANG Wei DONG Fei SHI Lite CAO Fang 《Geo-Spatial Information Science》 2006年第1期49-54,共6页
As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms... As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms and powerful analysis functions to valuate land will improve the rationality and convenience of land valu- ation. The objective of the study on basic land price using the optimal path algorithm is to decrease the man made error, enhance automatization, avoid make inconvenience by roadblock object. 展开更多
关键词 GIS optimal path shortest path land price appraisal land valuation basic land price
下载PDF
A~*算法在Shortest-Path方面的优化研究 被引量:4
9
作者 梁昭阳 蓝茂俊 陈正铭 《计算机系统应用》 2018年第7期255-259,共5页
在游戏和地理信息系统开发等领域中,专门针对最短路径搜索方面的优化研究较多,尤其是最短路径中启发式搜索算法中的A*算法的效率优化研究.本文将针对在人工智能或算法研究中的使用的地图大多数是基于任意图而不是网格图的状况,通过任意... 在游戏和地理信息系统开发等领域中,专门针对最短路径搜索方面的优化研究较多,尤其是最短路径中启发式搜索算法中的A*算法的效率优化研究.本文将针对在人工智能或算法研究中的使用的地图大多数是基于任意图而不是网格图的状况,通过任意图与网格图及方向的相结合,提出了三种优化A*算法的启发式函数搜索策略,较好地减小了算法搜索的范围和规模,有效地提高了A*算法的运行效率.最后的实验结果显示,与传统的A*算法相比较,优化启发搜索策略后的A*算法寻径更快速,更准确,计算效率更高. 展开更多
关键词 启发式搜索策略 A^*算法 方向 最短路径搜索
下载PDF
Dynamic Shortest Path Algorithm in Stochastic Traffic Networks Using PSO Based on Fluid Neural Network 被引量:1
10
作者 Yanfang Deng Hengqing Tong 《Journal of Intelligent Learning Systems and Applications》 2011年第1期11-16,共6页
The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based e... The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network. 展开更多
关键词 Particle SWARM optimization FLUID NEURON Network shortest path TRAFFIC Networks
下载PDF
Grid-Based Path Planner Using Multivariant Optimization Algorithm
11
作者 Baolei Li Danjv Lv +3 位作者 Xinling Shi Zhenzhou An Yufeng Zhang Jianhua Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第5期89-96,共8页
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an... To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path. 展开更多
关键词 multivariant optimization algorithm shortest path planning heuristic search grid map optimality of algorithm
下载PDF
Automated Pipe Routing Optimization for Ship Machinery
12
作者 Gunawan Kunihiro Hamada +7 位作者 Kakeru Kunihiro Allessandro Setyo Anggito Utomo Michael Ahli Raymond Lesmana Cornelius Yutaka Kobayashi Tadashi Yoshimoto Takanobu Shimizu 《Journal of Marine Science and Application》 CSCD 2022年第2期170-178,共9页
In the shipbuilding industry,market competition is currently operating in an intense state.To be able to strive in the global market,the shipbuilders must able to produce ships that are more efficient and can be const... In the shipbuilding industry,market competition is currently operating in an intense state.To be able to strive in the global market,the shipbuilders must able to produce ships that are more efficient and can be constructed in a relatively short amount of time.The piping layouts in the engine room requires a lot of time for the designer to design the best possible route and in a way are not the most efficient route.This paper presents an automatic piping support system in the ship’s engine room based on the Dijkstra’s algorithm of pathfinding method.The proposed method is focused on finding the shortest possible route with a consideration of the following things:cost of the bend pipe,cost of the crossing pipe,cost reduction by pipe support,restriction on piping,reduction of calculation time,and design procedure of piping route.Dijkstra’s shortest path algorithm is adopted to find the shortest path route between the start and goal point that is determined based on the layout of the ship’s engine room.Genetic algorithm is adopted to decide the sequence of the pipe execution.The details of the proposed method are explained in this paper.This paper also discusses the application of the proposed method on an actual ship and evaluates its effectiveness. 展开更多
关键词 Design optimization Piping system Dijkstra’s algorithm shortest path
下载PDF
Energy Efficient Path Determination in Wireless Sensor Network Using BFS Approach
13
作者 Shilpa Mahajan Jyoteesh Malhotra 《Wireless Sensor Network》 2011年第11期351-356,共6页
The wireless sensor networks (WSN) are formed by a large number of sensor nodes working together to provide a specific duty. However, the low energy capacity assigned to each node prompts users to look at an important... The wireless sensor networks (WSN) are formed by a large number of sensor nodes working together to provide a specific duty. However, the low energy capacity assigned to each node prompts users to look at an important design challenge such as lifetime maximization. Therefore, designing effective routing techniques that conserve scarce energy resources is a critical issue in WSN. Though, the chain-based routing is one of significant routing mechanisms but several common flaws, such as data propagation delay and redundant transmission, are associated with it. In this paper, we will be proposing an energy efficient technique based on graph theory that can be used to find out minimum path based on some defined conditions from a source node to the destination node. Initially, a sensor area is divided into number of levels by a base station based on signal strength. It is important to note that this technique will always found out minimum path and even alternate path are also saved in case of node failure. 展开更多
关键词 GRAPH Theory BREADTH First search Energy Efficient COST shortest path
下载PDF
Computational Studies on Detecting a Diffusing Target in a Square Region by a Stationary or Moving Searcher
14
作者 Hongyun Wang Hong Zhou 《American Journal of Operations Research》 2015年第2期47-68,共22页
In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non... In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically. 展开更多
关键词 Diffusing TARGET Non-Detection PROBABILITY search Theory optimal search path
下载PDF
基于多策略融合改进粒子群算法的路径规划研究 被引量:4
15
作者 陈旭东 杨光永 +1 位作者 徐天奇 樊康生 《组合机床与自动化加工技术》 北大核心 2024年第2期44-50,共7页
针对传统粒子群算法(particle swarm optimization,PSO)在路径规划中易陷入局部最优使得规划路径较长以及搜索后期由于种群多样性降低容易陷入停滞等问题,提出一种多策略融合粒子群算法(multi-strategy fusion particle swarm optimizat... 针对传统粒子群算法(particle swarm optimization,PSO)在路径规划中易陷入局部最优使得规划路径较长以及搜索后期由于种群多样性降低容易陷入停滞等问题,提出一种多策略融合粒子群算法(multi-strategy fusion particle swarm optimization,MFPSO)并将其应用于路径规划中。首先,利用中垂线算法(midperpendicular algorithm)的粒子位置更新方法提升粒子的收敛速度;其次,在最优粒子附近采用生成爆炸粒子的策略使算法跳出局部最优;然后,引入线性动态惯性权重调整方法,增加算法的搜索能力;最后,在路径规划应用中采用全局最优解局部搜索策略,在算法后期得出的最优路径再进行局部搜索得出更优的路径,增加机器人路径规划能力。仿真结果表明,多策略融合粒子群算法在路径规划中具有更高的路径搜索能力。 展开更多
关键词 路径规划 中垂线算法 爆炸粒子 全局最优解局部搜索
下载PDF
Railway station route searching based on ACA
16
作者 WANG Feng 《通讯和计算机(中英文版)》 2009年第8期54-58,共5页
关键词 火车站 路线 磷脂 基础 最短路径搜索 信号系统 搜索算法 蚁群算法
下载PDF
基于声纳搜索累积探测概率的平台路径优化方法
17
作者 卫翔 刘星璇 +2 位作者 付殿峥 杨天吉 杨家轩 《系统仿真学报》 CAS CSCD 北大核心 2024年第11期2674-2683,共10页
针对面向移动目标的移动搜索平台最优路径研究不足问题,提出一种基于累积搜索概率理论的移动搜索平台路径优化方法。基于传感器性能评价的重要标准之一的累积探测概率(cumulative detection probability,CDP),利用时序相关性模型,即(λ,... 针对面向移动目标的移动搜索平台最优路径研究不足问题,提出一种基于累积搜索概率理论的移动搜索平台路径优化方法。基于传感器性能评价的重要标准之一的累积探测概率(cumulative detection probability,CDP),利用时序相关性模型,即(λ,σ)过程模型,构造单峰CDP计算公式。构建一组目标运动想定,利用贝叶斯后验概率修正目标想定轨迹概率和不同时刻下的CDP。以搜索完成时CDP最大以及CDP达到目标水平时间最短为多目标,在连续时间与连续空间中实现高效搜索,构建面向声纳搜索移动目标的路径优化模型,通过多目标遗传算法给出优化解。与随机搜索模式下的CDP结果比对可以发现,本文方法可以获得更高的CDP,比单目标优化结果所得到的搜索方案具有更高的效率。 展开更多
关键词 声纳搜索 累积探测概率 路径优化 多目标优化 遗传算法
下载PDF
复合联运物流运输网络建模与路径优化
18
作者 张楠 魏波 陈聪 《科技和产业》 2024年第5期102-110,共9页
在全球经济一体化背景下,物流行业成为不可或缺的经济支柱之一,在经济中的作用不断显现,复合联运逐渐成为物流行业的重要运输方式。以空铁海复合联运作为研究对象,构建不同的搜索空间,确定边界条件并分析货运影响参数,包括时间、成本、... 在全球经济一体化背景下,物流行业成为不可或缺的经济支柱之一,在经济中的作用不断显现,复合联运逐渐成为物流行业的重要运输方式。以空铁海复合联运作为研究对象,构建不同的搜索空间,确定边界条件并分析货运影响参数,包括时间、成本、距离。以遗传算法为原则,求解建立空铁海复合联运模型并进行路径优化。确定3组节点组,每组都包含普通货物、特殊货物、航线拥堵3种情况,分别优化成本、时间、距离,为复合联运业务提供路径选择依据。通过分析,在规定的搜索空间内分别选出了最优时间路线、最优成本路线、最优距离路线。期望可以在物流运输过程中实现降本增效、减少风险、提高行业竞争力的目的。 展开更多
关键词 复合联运 路径优化 搜索空间 遗传算法
下载PDF
基于改进蚁群算法的邮船舱室模块移运路径规划 被引量:2
19
作者 王炬成 赵学涛 《造船技术》 2024年第1期1-7,27,共8页
针对大型邮船舱室模块运输过程中存在的移运路线长、路线混乱、舱室模块易与障碍物发生碰撞等问题,提出应用加入动态搜索模型的蚁群算法对邮船舱室模块进行路线规划,为运输舱室模块提供清晰、便捷的移运路线。对主竖区的障碍物进行分析... 针对大型邮船舱室模块运输过程中存在的移运路线长、路线混乱、舱室模块易与障碍物发生碰撞等问题,提出应用加入动态搜索模型的蚁群算法对邮船舱室模块进行路线规划,为运输舱室模块提供清晰、便捷的移运路线。对主竖区的障碍物进行分析,建立模拟实际工况的栅格地图,采用改进蚁群算法寻找移运路径。对不同位置所经过的栅格地图和蚁群数量进行动态调整。采用模拟退火算法寻找蚁群算法的参数。采用离散点分析确定移运路径的主、支通道。仿真试验结果表明,应用改进蚁群算法建立主、支通道进行舱室模块移运可有效提高舱室模块的运输效率。 展开更多
关键词 邮船 舱室模块 移运路径规划 改进蚁群算法 动态搜索模型 障碍物优化 模拟退火算法
下载PDF
公交辅助无人机的城市物流配送模式研究
20
作者 彭勇 任志 《计算机工程与应用》 CSCD 北大核心 2024年第7期335-343,共9页
电子商务迅猛发展倒逼物流行业不断转型升级,针对各地政府鼓励公共交通发展,倡导绿色低碳的物流配送方式,研究了一种公交辅助无人机的配送模式。对问题做出说明后,构建了以配送成本最小的数学模型,并设计了智能通用变邻域搜索算法对问... 电子商务迅猛发展倒逼物流行业不断转型升级,针对各地政府鼓励公共交通发展,倡导绿色低碳的物流配送方式,研究了一种公交辅助无人机的配送模式。对问题做出说明后,构建了以配送成本最小的数学模型,并设计了智能通用变邻域搜索算法对问题求解,同时为提高算法求解效率,引入K-means分簇与贪婪算法生成初始解。针对不同规模算例,进行多种局部搜索策略、多种算法对比实验,验证了算法有效性;选取标准CVRP算例,将单卡车配送、卡车无人机协同配送与公交辅助无人机配送模式进行对比,证明其成本、时间优势;选取北京快速公交2号线及周边客户点,通过改变公交站点间距、发车间隔做出敏感度分析,实验结果证明增大站点间距的影响大于发车间隔的改变。 展开更多
关键词 城市物流 公交辅助无人机 智能通用变邻域搜索 路径优化
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部