Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based...The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.展开更多
This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ...Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.展开更多
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission...This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms...As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms and powerful analysis functions to valuate land will improve the rationality and convenience of land valu- ation. The objective of the study on basic land price using the optimal path algorithm is to decrease the man made error, enhance automatization, avoid make inconvenience by roadblock object.展开更多
The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based e...The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network.展开更多
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an...To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.展开更多
In the shipbuilding industry,market competition is currently operating in an intense state.To be able to strive in the global market,the shipbuilders must able to produce ships that are more efficient and can be const...In the shipbuilding industry,market competition is currently operating in an intense state.To be able to strive in the global market,the shipbuilders must able to produce ships that are more efficient and can be constructed in a relatively short amount of time.The piping layouts in the engine room requires a lot of time for the designer to design the best possible route and in a way are not the most efficient route.This paper presents an automatic piping support system in the ship’s engine room based on the Dijkstra’s algorithm of pathfinding method.The proposed method is focused on finding the shortest possible route with a consideration of the following things:cost of the bend pipe,cost of the crossing pipe,cost reduction by pipe support,restriction on piping,reduction of calculation time,and design procedure of piping route.Dijkstra’s shortest path algorithm is adopted to find the shortest path route between the start and goal point that is determined based on the layout of the ship’s engine room.Genetic algorithm is adopted to decide the sequence of the pipe execution.The details of the proposed method are explained in this paper.This paper also discusses the application of the proposed method on an actual ship and evaluates its effectiveness.展开更多
The wireless sensor networks (WSN) are formed by a large number of sensor nodes working together to provide a specific duty. However, the low energy capacity assigned to each node prompts users to look at an important...The wireless sensor networks (WSN) are formed by a large number of sensor nodes working together to provide a specific duty. However, the low energy capacity assigned to each node prompts users to look at an important design challenge such as lifetime maximization. Therefore, designing effective routing techniques that conserve scarce energy resources is a critical issue in WSN. Though, the chain-based routing is one of significant routing mechanisms but several common flaws, such as data propagation delay and redundant transmission, are associated with it. In this paper, we will be proposing an energy efficient technique based on graph theory that can be used to find out minimum path based on some defined conditions from a source node to the destination node. Initially, a sensor area is divided into number of levels by a base station based on signal strength. It is important to note that this technique will always found out minimum path and even alternate path are also saved in case of node failure.展开更多
In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non...In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.展开更多
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
文摘The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
文摘Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.
基金supported by the National Natural Science Foundation of China(7140104871671059)the National Natural Science Funds of China for Innovative Research Groups(71521001)
文摘This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.
文摘As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms and powerful analysis functions to valuate land will improve the rationality and convenience of land valu- ation. The objective of the study on basic land price using the optimal path algorithm is to decrease the man made error, enhance automatization, avoid make inconvenience by roadblock object.
文摘The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61261007,61002049)the Key Program of Yunnan Natural Science Foundation(Grant No.2013FA008)
文摘To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.
基金supported the Directorate of Research and Community Engagement,Universitas Indonesia,and scheme of Research Collaboration,contract number:NKB-1954/UN2.R3.1/HKP.05.00/2019.
文摘In the shipbuilding industry,market competition is currently operating in an intense state.To be able to strive in the global market,the shipbuilders must able to produce ships that are more efficient and can be constructed in a relatively short amount of time.The piping layouts in the engine room requires a lot of time for the designer to design the best possible route and in a way are not the most efficient route.This paper presents an automatic piping support system in the ship’s engine room based on the Dijkstra’s algorithm of pathfinding method.The proposed method is focused on finding the shortest possible route with a consideration of the following things:cost of the bend pipe,cost of the crossing pipe,cost reduction by pipe support,restriction on piping,reduction of calculation time,and design procedure of piping route.Dijkstra’s shortest path algorithm is adopted to find the shortest path route between the start and goal point that is determined based on the layout of the ship’s engine room.Genetic algorithm is adopted to decide the sequence of the pipe execution.The details of the proposed method are explained in this paper.This paper also discusses the application of the proposed method on an actual ship and evaluates its effectiveness.
文摘The wireless sensor networks (WSN) are formed by a large number of sensor nodes working together to provide a specific duty. However, the low energy capacity assigned to each node prompts users to look at an important design challenge such as lifetime maximization. Therefore, designing effective routing techniques that conserve scarce energy resources is a critical issue in WSN. Though, the chain-based routing is one of significant routing mechanisms but several common flaws, such as data propagation delay and redundant transmission, are associated with it. In this paper, we will be proposing an energy efficient technique based on graph theory that can be used to find out minimum path based on some defined conditions from a source node to the destination node. Initially, a sensor area is divided into number of levels by a base station based on signal strength. It is important to note that this technique will always found out minimum path and even alternate path are also saved in case of node failure.
文摘In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.