In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p...In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.展开更多
Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction...Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.展开更多
A novel Recurrent Neural Network(RNN) based blind equalization algorithm is proposed in the paper.For the first time, the conjugate gradient algorithm and a three point searching method are used in RNN training.Simu...A novel Recurrent Neural Network(RNN) based blind equalization algorithm is proposed in the paper.For the first time, the conjugate gradient algorithm and a three point searching method are used in RNN training.Simulation results show that our algorithm is suprior to the one proposed by Kechriotis and the Constant Modulus Algorithm.展开更多
基金supported by the National Science Council under Grant No. NSC98-2221-E-468-017 and NSC 100-2221-E-468-023the Research Project of Asia University under Grant No. 100-A-04
文摘In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.
文摘Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.
文摘A novel Recurrent Neural Network(RNN) based blind equalization algorithm is proposed in the paper.For the first time, the conjugate gradient algorithm and a three point searching method are used in RNN training.Simulation results show that our algorithm is suprior to the one proposed by Kechriotis and the Constant Modulus Algorithm.