A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phr...A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phrases, which improve the accuracy of clustering. Also, the equation to measure the in-dependence of a phrase is proposed in this paper. The new algorithm which improves suffix tree clustering algorithm (STC) is named as improved suffix tree clustering (ISTC). To validate the proposed algorithm, a prototype system is implemented and used to cluster several groups of web search results obtained from Google search engine. Experimental results show that the improved algorithm offers higher accuracy than traditional suffix tree clustering.展开更多
In search engines, different users may search for different information by issuing the same query. To satisfy more users with limited search results, search result diversification re-ranks the results to cover as many...In search engines, different users may search for different information by issuing the same query. To satisfy more users with limited search results, search result diversification re-ranks the results to cover as many user intents as possible. Most existing intent-aware diversification algorithms recognize user intents as subtopics, each of which is usually a word, a phrase, or a piece of description. In this paper, we leverage query facets to understand user intents in diversification, where each facet contains a group of words or phrases that explain an underlying intent of a query. We generate subtopics based on query facets and propose faceted diversification approaches. Experimental results on the public TREC 2009 dataset show that our faceted approaches outperform state-of-the-art diversification models.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (60503020, 60503033, 60703086)Opening Foundation of Jiangsu Key Laboratory of Computer Information Processing Technology in Soochow Uni-versity (KJS0714)+1 种基金Research Foundation of Nanjing University of Posts and Telecommunications (NY207052, NY207082)National Natural Science Foundation of Jiangsu (BK2006094).
文摘A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phrases, which improve the accuracy of clustering. Also, the equation to measure the in-dependence of a phrase is proposed in this paper. The new algorithm which improves suffix tree clustering algorithm (STC) is named as improved suffix tree clustering (ISTC). To validate the proposed algorithm, a prototype system is implemented and used to cluster several groups of web search results obtained from Google search engine. Experimental results show that the improved algorithm offers higher accuracy than traditional suffix tree clustering.
文摘In search engines, different users may search for different information by issuing the same query. To satisfy more users with limited search results, search result diversification re-ranks the results to cover as many user intents as possible. Most existing intent-aware diversification algorithms recognize user intents as subtopics, each of which is usually a word, a phrase, or a piece of description. In this paper, we leverage query facets to understand user intents in diversification, where each facet contains a group of words or phrases that explain an underlying intent of a query. We generate subtopics based on query facets and propose faceted diversification approaches. Experimental results on the public TREC 2009 dataset show that our faceted approaches outperform state-of-the-art diversification models.