Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
Chitinases catalyze the hydrolysis of chitin, a linear homopolymer of β-(1,4)-linked N-acetylglucosamine. The broad range of applications of chitinolytic enzymes makes their identification and study very promising. M...Chitinases catalyze the hydrolysis of chitin, a linear homopolymer of β-(1,4)-linked N-acetylglucosamine. The broad range of applications of chitinolytic enzymes makes their identification and study very promising. Metagenomic approaches offer access to functional genes in uncultured representatives of the microbiota and hold great potential in the discovery of novel enzymes, but tools to extensively explore these data are still scarce. In this study, we develop a chitinase mining pipeline to facilitate the comprehensive search of these enzymes in environmental metagenomic databases and also to explore phylogenetic relationships among the retrieved sequences. In order to perform the analyses, UniprotKB fungal and bacterial chitinases sequences belonging to the glycoside hydrolases (GH) family-18, 19 and 20 were used to generate 15 reference datasets, which were then used to generate high quality seed alignments with the MAFFT program. Profile Hidden Markov Models (pHMMs) were built from each seed alignment using the hmmbuild program of HMMER v3.0 package. The best-hit sequences returned by hmmsearch against two environmental metagenomic databases (Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis—CAMERA and Integrated Microbial Genomes—IMG/M) were retrieved and further analyzed. The NJ trees generated for each chitinase dataset showed some variability in the catalytic domain region of the metagenomic sequences and revealed common sequence patterns among all the trees. The scanning of the retrieved metagenomic sequences for chitinase conserved domains/signatures using both the InterPro and the RPS-BLAST tools confirmed the efficacy and sensitivity of our pHMM-based approach in detecting putative chitinases sequences. These analyses provide insight into the potential reservoir of novel molecules in metagenomic databases while supporting the chitinase mining pipeline developed in this work. By using our chitinase mining pipeline, a larger number of previously unannotated metagenomic chitinase sequences can be classified, enabling further studies on these enzymes.展开更多
Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the...Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.展开更多
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
文摘Chitinases catalyze the hydrolysis of chitin, a linear homopolymer of β-(1,4)-linked N-acetylglucosamine. The broad range of applications of chitinolytic enzymes makes their identification and study very promising. Metagenomic approaches offer access to functional genes in uncultured representatives of the microbiota and hold great potential in the discovery of novel enzymes, but tools to extensively explore these data are still scarce. In this study, we develop a chitinase mining pipeline to facilitate the comprehensive search of these enzymes in environmental metagenomic databases and also to explore phylogenetic relationships among the retrieved sequences. In order to perform the analyses, UniprotKB fungal and bacterial chitinases sequences belonging to the glycoside hydrolases (GH) family-18, 19 and 20 were used to generate 15 reference datasets, which were then used to generate high quality seed alignments with the MAFFT program. Profile Hidden Markov Models (pHMMs) were built from each seed alignment using the hmmbuild program of HMMER v3.0 package. The best-hit sequences returned by hmmsearch against two environmental metagenomic databases (Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis—CAMERA and Integrated Microbial Genomes—IMG/M) were retrieved and further analyzed. The NJ trees generated for each chitinase dataset showed some variability in the catalytic domain region of the metagenomic sequences and revealed common sequence patterns among all the trees. The scanning of the retrieved metagenomic sequences for chitinase conserved domains/signatures using both the InterPro and the RPS-BLAST tools confirmed the efficacy and sensitivity of our pHMM-based approach in detecting putative chitinases sequences. These analyses provide insight into the potential reservoir of novel molecules in metagenomic databases while supporting the chitinase mining pipeline developed in this work. By using our chitinase mining pipeline, a larger number of previously unannotated metagenomic chitinase sequences can be classified, enabling further studies on these enzymes.
基金supported by China Civil Space Foundation(No.C1320063131)
文摘Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.