光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。