期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Estimation of state of health based on charging characteristics and back-propagation neural networks with improved atom search optimization algorithm 被引量:1
1
作者 Yu Zhang Yuhang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期228-237,共10页
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import... With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%. 展开更多
关键词 State of health Lithium-ion battery Dt_DT Improved atom search optimization algorithm
下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
2
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
下载PDF
Optimizing combination of aircraft maintenance tasks by adaptive genetic algorithm based on cluster search 被引量:5
3
作者 Huaiyuan Li Hongfu Zuo +3 位作者 Kun Liang Juan Xu Jing Cai Junqiang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期140-156,共17页
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima... It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high. 展开更多
关键词 cluster search genetic algorithm combinatorial optimization multi-part maintenance grouping maintenance.
下载PDF
Genetic algorithm for short-term scheduling of make-and-pack batch production process 被引量:1
4
作者 Wuthichai Wongthatsanekorn Busaba Phruksaphanrat 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1475-1483,共9页
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti... This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time. 展开更多
关键词 Genetic algorithm Ant colony optimization Tabu search Batch scheduling Make-and-pack production Forward assignment strategy
下载PDF
Cavitation Diagnostics Based on Self-Tuning VMD for Fluid Machinery with Low-SNR Conditions 被引量:1
5
作者 Hao Liu Zheming Tong +1 位作者 Bingyang Shang Shuiguang Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期212-226,共15页
Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interf... Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method. 展开更多
关键词 Fluid machinery Self-tuning VMD Cavitation diagnostics Hybrid optimized sparrow search algorithm
下载PDF
Bald Eagle Search Optimization Algorithm Combined with Spherical Random Shrinkage Mechanism and Its Application 被引量:1
6
作者 Wenyan Guo Zhuolin Hou +2 位作者 Fang Dai Xiaoxia Wang Yufan Qiang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期572-605,共34页
Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic opt... Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems. 展开更多
关键词 Bald eagle search optimization algorithm Spherical coordinates Chaotic variation Simplex method Encapsulated feature selection
原文传递
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA
7
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
8
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(SAE)network
下载PDF
AModified Search and Rescue Optimization Based Node Localization Technique inWSN 被引量:1
9
作者 Suma Sira Jacob K.Muthumayil +4 位作者 M.Kavitha Lijo Jacob Varghese M.Ilayaraja Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第1期1229-1245,共17页
Wireless sensor network(WSN)is an emerging technology which find useful in several application areas such as healthcare,environmentalmonitoring,border surveillance,etc.Several issues that exist in the designing of WSN... Wireless sensor network(WSN)is an emerging technology which find useful in several application areas such as healthcare,environmentalmonitoring,border surveillance,etc.Several issues that exist in the designing of WSN are node localization,coverage,energy efficiency,security,and so on.In spite of the issues,node localization is considered an important issue,which intends to calculate the coordinate points of unknown nodes with the assistance of anchors.The efficiency of the WSN can be considerably influenced by the node localization accuracy.Therefore,this paper presents a modified search and rescue optimization based node localization technique(MSRONLT)forWSN.The major aim of theMSRO-NLT technique is to determine the positioning of the unknown nodes in theWSN.Since the traditional search and rescue optimization(SRO)algorithm suffers from the local optima problemwith an increase in number of iterations,MSRO algorithm is developed by the incorporation of chaotic maps to improvise the diversity of the technique.The application of the concept of chaotic map to the characteristics of the traditional SRO algorithm helps to achieve better exploration ability of the MSRO algorithm.In order to validate the effective node localization performance of the MSRO-NLT algorithm,a set of simulations were performed to highlight the supremacy of the presented model.A detailed comparative results analysis showcased the betterment of the MSRO-NLT technique over the other compared methods in terms of different measures. 展开更多
关键词 Node localization WSN chaotic map search and rescue optimization algorithm localization error
下载PDF
An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility
10
作者 Abhijit J.Patil Ramesh Shelke 《High-Confidence Computing》 EI 2023年第4期47-59,共13页
Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection.Most of the traditional extracting processes in audio watermarking have some restrictions due to... Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection.Most of the traditional extracting processes in audio watermarking have some restrictions due to low reliability to various attacks.Hence,a deep learning-based audio watermarking system is proposed in this research to overcome the restriction in the traditional methods.The implication of the research relies on enhancing the performance of the watermarking system using the Discrete Wavelet Transform(DWT)and the optimized deep learning technique.The selection of optimal embedding location is the research contribution that is carried out by the deep convolutional neural network(DCNN).The hyperparameter tuning is performed by the so-called search location optimization,which minimizes the errors in the classifier.The experimental result reveals that the proposed digital audio watermarking system provides better robustness and performance in terms of Bit Error Rate(BER),Mean Square Error(MSE),and Signal-to-noise ratio.The BER,MSE,and SNR of the proposed audio watermarking model without the noise are 0.082,0.099,and 45.363 respectively,which is found to be better performance than the existing watermarking models. 展开更多
关键词 Search location optimization algorithm Deep convolutional neural network DWT ROBUSTNESS IMPERCEPTIBILITY
原文传递
Damage detection in steel plates using feed-forward neural network coupled with hybrid particle swarm optimization and gravitational search algorithm 被引量:1
11
作者 Long Viet HO Duong Huong NGUYEN +2 位作者 Guido de ROECK Thanh BU-TIEN Magd Abdel WAHAB 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第6期467-480,共14页
Over recent decades,the artificial neural networks(ANNs)have been applied as an effective approach for detecting damage in construction materials.However,to achieve a superior result of defect identification,they have... Over recent decades,the artificial neural networks(ANNs)have been applied as an effective approach for detecting damage in construction materials.However,to achieve a superior result of defect identification,they have to overcome some shortcomings,for instance slow convergence or stagnancy in local minima.Therefore,optimization algorithms with a global search ability are used to enhance ANNs,i.e.to increase the rate of convergence and to reach a global minimum.This paper introduces a two-stage approach for failure identification in a steel beam.In the first step,the presence of defects and their positions are identified by modal indices.In the second step,a feedforward neural network,improved by a hybrid particle swarm optimization and gravitational search algorithm,namely FNN-PSOGSA,is used to quantify the severity of damage.Finite element(FE)models of the beam for two damage scenarios are used to certify the accuracy and reliability of the proposed method.For comparison,a traditional ANN is also used to estimate the severity of the damage.The obtained results prove that the proposed approach can be used effectively for damage detection and quantification. 展开更多
关键词 Feedforward neural network-particle swarm optimization and gravitational search algorithm(FNN-PSOGSA) Modal damage indices Damage detection Hybrid algorithm PSOGSA
原文传递
Fuzzy energy management strategy for parallel HEV based on pigeon-inspired optimization algorithm 被引量:14
12
作者 PEI JiaZheng SU YiXin ZHANG DanHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第3期425-433,共9页
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri... Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em- 展开更多
关键词 parallel hybrid electric vehicles(parallel HEV) energy management strategy(EMS) fuzzy controller pigeon-inspired optimization(PIO) algorithm quantum evolution chaotic search
原文传递
Improved fluid search optimization-based real-time weed mapping 被引量:2
13
作者 Chengcheng Chen Shengsheng Wang +2 位作者 Xianchang Wang Helong Yu Ruyi Dong 《Information Processing in Agriculture》 EI 2020年第3期403-417,共15页
In the field of agriculture,variable-rate herbicide spraying(VRHS)technology has been used to solve the low efficiency of pesticides and crop chemical residues.The key of VRHS is the quick and precise identification o... In the field of agriculture,variable-rate herbicide spraying(VRHS)technology has been used to solve the low efficiency of pesticides and crop chemical residues.The key of VRHS is the quick and precise identification of weeds from field images,which forms a weed map.Fluid search optimization(FSO)was able to simplify the threshold optimization process to create a weed map,which simulated the fluid flowing from high pressure to low pressure,but it is time consuming and often converges prematurely.So,an explosion mechanism and a twophase optimization were introduced to improve the FSO-based segmentation algorithm.Experiments of segmentation weeds from a corn field at seedling growth stage showed that the IFSO algorithm obtained the best accuracy of 93.3%and the least running time of 0.019 s,compared with the standard PSO,GA,and FSO algorithms. 展开更多
关键词 Variable-rate herbicide spraying Weed map Fluid search optimization algorithm OTSU
原文传递
A novel stacking-based ensemble learning model for drilling efficiency prediction in earth-rock excavation 被引量:1
14
作者 Fei LV Jia YU +3 位作者 Jun ZHANG Peng YU Da-wei TONG Bin-ping WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期1027-1046,共20页
Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity an... Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively. 展开更多
关键词 Drilling efficiency PREDICTION Earth-rock excavation Stacking-based ensemble learning Improved cuckoo search optimization(ICSO)algorithm Comprehensive effects of various factors Hyper-parameter optimization
原文传递
A new two-degree of freedom combined PID controller for automatic generation control of a wind integrated interconnected power system 被引量:1
15
作者 Appala Naidu Karanam Binod Shaw 《Protection and Control of Modern Power Systems》 2022年第1期300-315,共16页
Frequency control of an interconnected power system in the presence of wind integration is complex since wind speed/power variations also affect system frequency in addition to load perturbations.Therefore,improving e... Frequency control of an interconnected power system in the presence of wind integration is complex since wind speed/power variations also affect system frequency in addition to load perturbations.Therefore,improving existing control schemes is necessary to maintain a stable frequency in such complex power system scenarios.In this paper,a new 2-degree of freedom combined proportional-integral and derivative control scheme is applied to a wind integrated interconnected power system.In designing the controller,several inputs used for a secondary frequency control loop are considered along with the merits of the existing controllers.The combined controller provides better control action than existing controllers in the presence of wind as is evidenced by the wide variety of results pre-sented.For tuning of the controller gains,a crow search optimization algorithm(CRSOA)is used.Results are obtained via the MATLAB/Simulink software. 展开更多
关键词 Load frequency control 2-DOF-PID controller Crow search optimization algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部