The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) m...The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.展开更多
This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including l...This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.展开更多
Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal ...Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal orientation in mid-upper troposphere.During the Asian monsoon bursting consequentially over the Bay of Bengal,South China Sea,and South Asia,in addition to the reversal of winds in the lower and upper troposphere and deep convection before and after the onset,the atmospheric meridional temperature gradient (MTG) in the vicinity of the ridge-surface of subtropical high (WEB defined in Part Ⅰ) exhibits a significant reversal.Since the establishment of temperature structure with higher over north than over south of the WEB in the mid-upper troposphere (200-500 hPa) characterizes the collective essential that the Asian summer monsoon bursts over different areas,the MTG in mid-upper troposphere,based on the thermodynamics associated with the seasonal transition,should be a reasonable index to measure the Asian monsoon onset.The definition for onset date is proposed,and the time series of onset date for different sections are determined.As compared with the onset dates determined by other indices such as 850-hPa zonal wind and OLR.correlation analyses indicate that the 850-hPa zonal wind is only regional index,but the MTG index is applicable universally to the Asian monsoon regime.展开更多
Beijing–Tianjin–Hebei(BTH)and its surrounding areas are very important to air pollution control in China.To analyze the characteristics of BTH and its surrounding areas of China,we collected 5,641,440 air quality da...Beijing–Tianjin–Hebei(BTH)and its surrounding areas are very important to air pollution control in China.To analyze the characteristics of BTH and its surrounding areas of China,we collected 5,641,440 air quality data from 161 air monitoring stations and 37,123,000 continuous monitoring data from air polluting enterprises in BTH and surrounding cities to establish an indicator system for urban air quality portraits.The results showed that particulate matter with aerodynamic diameters of<2.5μm(PM2.5),particulate matter with aerodynamic diameters of<10μm(PM10)and SO2 improved significantly in 31 cities from2015 to 2018,but ozone deteriorated.Air quality in BTH and the surrounding areas showed obvious seasonal characteristics,among which PM2.5,PM10,SO2,and NO2 showed a"U"type distribution from January to December,while O3 had an"inverted U"distribution.The hourly changes in air quality revealed that peaks of PM2.5,PM10 and NO2 appeared from 8:00 to 10:00,while those for O3 appeared at 15:00–16:00.The exposure characteristics of the 31 cities showed that six districts in Beijing had the highest air quality population exposure,and that exposure levels in Zhengzhou,Puyang,Anyang,Jincheng were higher than the average of the 31 investigated cities.Additionally,multiple linear regression revealed a negative correlation between meteorological factors(especially wind and precipitation)and air quality,while a positive correlation existed between industrial pollution emissions and air quality in most of BTH and its surrounding cities.展开更多
Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because so...Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.展开更多
文摘The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.
基金funded by the tropical marine meteorology fund from the Institute of Tropical and Marine Meteorology CMAthe National Basic Research Program of China(2011CB403500)+2 种基金SOED1108LED1002the Fundamental Research Funds for the Central Universities (No.11lgpy13)
文摘This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.
基金the National Natural Science Foundation of China (40375022,40135020)Chinese Academy of Sciences (ZKCX2-SW-210)LASG Foundation (40023001)
文摘Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal orientation in mid-upper troposphere.During the Asian monsoon bursting consequentially over the Bay of Bengal,South China Sea,and South Asia,in addition to the reversal of winds in the lower and upper troposphere and deep convection before and after the onset,the atmospheric meridional temperature gradient (MTG) in the vicinity of the ridge-surface of subtropical high (WEB defined in Part Ⅰ) exhibits a significant reversal.Since the establishment of temperature structure with higher over north than over south of the WEB in the mid-upper troposphere (200-500 hPa) characterizes the collective essential that the Asian summer monsoon bursts over different areas,the MTG in mid-upper troposphere,based on the thermodynamics associated with the seasonal transition,should be a reasonable index to measure the Asian monsoon onset.The definition for onset date is proposed,and the time series of onset date for different sections are determined.As compared with the onset dates determined by other indices such as 850-hPa zonal wind and OLR.correlation analyses indicate that the 850-hPa zonal wind is only regional index,but the MTG index is applicable universally to the Asian monsoon regime.
基金supported by the Humanities and Social Sciences Project Youth Fund of Ministry of Education in China(No.18YJCZH196)the National Natural Science Foundation of China(No.71573149)
文摘Beijing–Tianjin–Hebei(BTH)and its surrounding areas are very important to air pollution control in China.To analyze the characteristics of BTH and its surrounding areas of China,we collected 5,641,440 air quality data from 161 air monitoring stations and 37,123,000 continuous monitoring data from air polluting enterprises in BTH and surrounding cities to establish an indicator system for urban air quality portraits.The results showed that particulate matter with aerodynamic diameters of<2.5μm(PM2.5),particulate matter with aerodynamic diameters of<10μm(PM10)and SO2 improved significantly in 31 cities from2015 to 2018,but ozone deteriorated.Air quality in BTH and the surrounding areas showed obvious seasonal characteristics,among which PM2.5,PM10,SO2,and NO2 showed a"U"type distribution from January to December,while O3 had an"inverted U"distribution.The hourly changes in air quality revealed that peaks of PM2.5,PM10 and NO2 appeared from 8:00 to 10:00,while those for O3 appeared at 15:00–16:00.The exposure characteristics of the 31 cities showed that six districts in Beijing had the highest air quality population exposure,and that exposure levels in Zhengzhou,Puyang,Anyang,Jincheng were higher than the average of the 31 investigated cities.Additionally,multiple linear regression revealed a negative correlation between meteorological factors(especially wind and precipitation)and air quality,while a positive correlation existed between industrial pollution emissions and air quality in most of BTH and its surrounding cities.
基金supported by the National Natural Science Foundation of China(31870406,41661144045)the State Key Research and Development Program(2016YFC0502001,2017YFA0604801).
文摘Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.