期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
In-situ experiment investigations of hydrothermal process of highway in deep seasonal frozen soil regions of Inner Mongolia, China 被引量:5
1
作者 ZHANG Hong-wei WANG Xue-ying +1 位作者 ZHAO Xin LIU Peng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2082-2093,共12页
To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years,... To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years, based on which the freezing-thawing rules and water content changing characteristics were analyzed. The main results show the subgrade presents a frequent freezing-thawing alternation, and the water content of subgrade exhibits an obvious seasonal alternation. The subbase has the maximum water content, while the base has the minimum water content. The change of water flux is concentrated in the thawing period and consistent with the change of temperature gradient. The subbase layer has the most active water flux due to the heat absorption and impermeability of pavement that easily causes the water accumulation in this layer. Therefore, the prevention and treatment for the freezing-thawing disease should be started from heat insulation and water resistance. 展开更多
关键词 subgrade engineering hydrothermal process field observation seasonal frozen soil regions freezing-thawing disease
下载PDF
Anomaly feature of seasonal frozen soil variationson the Qinghai-Tibet Plateau 被引量:5
2
作者 WANG Cheng-hai1,2, DONG Wen-jie3, WEI Zhi-gang2 (1. College of Resource and Environmental Science, Lanzhou University, Lanzhou 730000, China 2. Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China 3. Insti 《Journal of Geographical Sciences》 SCIE CSCD 2002年第1期99-107,共9页
The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 statio... The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas. 展开更多
关键词 Qinghai-Tibet Plateau seasonal frozen soil rotated empirical orthogonal function analysis anomaly areas
下载PDF
Seasonally frozen soil effects on the dynamic behavior of highway bridges 被引量:1
3
作者 ZhaoHui "Joey" Yang Qiang Li +1 位作者 Elmer E. Marx JinChi Lu 《Research in Cold and Arid Regions》 2012年第1期13-20,共8页
Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in brid... Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in bridge pier boundary conditions require addi- tional detailing in order to ensure a ductile performance of the bridge during a design earthquake event. This paper reports the lat- est results obtained from a project that systematically investigated the effects of seasonally frozen soil on the seismic behavior of highway bridges in cold regions. A bridge was chosen and was monitored to study its seismic performance and assess the impact of seasonally frozen soil on its dynamic properties. A Finite Element (FE) model was created for this bridge to analyze the impact of seasonal frost. It was found that when frost depth reaches 1.2 m, the first transverse modal frequency increases about 200% when compared with the no-frost case. The results show that seasonal frost has a significant impact on the overall dynamic be- havior of bridges supported by pile foundations in cold regions, and that these effects should be accounted for in seismic design. 展开更多
关键词 dynamic behavior seasonally frozen soil pile foundation EARTHQUAKE Finite Element modeling
下载PDF
Study on potential evapotranspiration and wet-dry condition in the seasonal frozen soil region of northern Tibetan Plateau 被引量:1
4
作者 HuiGen He ZeYong Hu +4 位作者 XueYi Xun Jun Sun Li Hao LiJiao Xu Wen Peng 《Research in Cold and Arid Regions》 2011年第2期172-178,共7页
This study was based on the CEOP/CAMP-Tibet observed data at AWS (Automatic Weather Station) of MS3478 in the seasonal frozen soil region of northern Tibetan Plateau from March 2007 to February 2008. The variation c... This study was based on the CEOP/CAMP-Tibet observed data at AWS (Automatic Weather Station) of MS3478 in the seasonal frozen soil region of northern Tibetan Plateau from March 2007 to February 2008. The variation characteristics of PE (potential evapotransph'ation) were analyzed based on the Penman-Monteith method recommended by FAO (the Food and Agriculture Organization of the United Na- lions). The contributions of dynamic, thermal and water factors to PE were discussed, and the wet-dry condition of the plateau region was further studied. The results indicated that daily PE was between 0.52 mm and 6.46 mm for the whole year. Monthly PE was over 107 mm from May to September, but decreased to less than 41 mm from November to February. Annual PE was 1,037.8mm. In the summer, thermal PE was significantly more than dynamic PE, but conversely in the winter. Annual variation of thermal PE was of sine wave pattern. In addition, drought and semi-drought climate lasted for a long time while semi-humid climate was short. The effect of water and dynamic factors on PE varied considerably with the seasons. Annual variation of thermal PE was of sine wave pattern. 展开更多
关键词 northern Tibetan Plateau seasonal frozen soil region potential evapolranspimtion dynamic and thermal effects water factor wet -dry condition
下载PDF
Variation characteristics of temperature and moisture content of seasonal frozen soil during freezing process in Changchun,China 被引量:2
5
作者 WANG Qing FAN Jianhua +1 位作者 FANG Ming ZHANG Li 《Global Geology》 2009年第1期13-16,共4页
In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common dam... In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common damage phenomena, such as frost heave, subsidence deformation and frost boiling, are all caused by water translocation. Aiming at the phenomenon, the changes of moisture content of seasonal frozen soil in Changchun City are mainly studied by long-term field observation and indoor testing of physical properties under different conditions, and then the variation characteristics of moisture content in soil under different compactness and temperature conditions are realized. The results show that the increasing section of moisture content and negative temperature section all lie in O. 0 - 1.0 m of subgrade. Both lowest air and earth temperature occur in January to February, and the most negative temperature ranges from -7℃ to -10℃. 展开更多
关键词 seasonal frozen soil moisture content Changchun
下载PDF
Characterizing Subzero-Temperature Thermal Properties of Seasonally Frozen Soil in Alpine Forest in the Western Sichuan Province, China
6
作者 Hui Sun Shuai Liu Jihong Qin 《Journal of Water Resource and Protection》 2016年第5期583-593,共11页
Seasonally frozen soil in alpine and subalpine zones in the mountains of Qinghai-Tibetan Plateau is particularly sensitive to global climate change. Therefore, a better understanding of the thermal properties of froze... Seasonally frozen soil in alpine and subalpine zones in the mountains of Qinghai-Tibetan Plateau is particularly sensitive to global climate change. Therefore, a better understanding of the thermal properties of frozen soil is crucial for predicting the responses of frozen soils to soil warming. In this study, thermal properties of frozen soil with different moisture contents under subzero temperature (0°C - 20°C) in an alpine forest in western Sichuan were analyzed by KD<sub>2</sub> Pro in its cooling and heating processes, respectively. Our results reveal that the soil apparent volumetric specific heat capacity (C<sub>v</sub>) and apparent thermal conductivity (K) under the same water content show similar response patterns to changing temperature lower than -2°C in both heating and cooling processes. Moreover, ice content of frozen soils can be well predicted by Logistic model in cooling and heating processes. The C<sub>v</sub> and K tend to increase along with increasing soil moisture contents. Remarkably, asymptotic characters of the value of C<sub>v</sub> and K are at the vicinity of the initial temperature of phase transitions, indicating that both C<sub>v</sub> and K are particularly sensitive to changing soil temperature at the range of -2°C to 0°C. Therefore, the widely distributed frozen soil layers with temperature above -2°C in alpine and subalpine zones over Qinghai-Tibetan Plateau are susceptible to the observed climate warming during cold season. 展开更多
关键词 Alpine soil seasonally frozen soil Thermal Properties Qinghai-Tibetan Plateau
下载PDF
Seasonal freezing-thawing process and hydrothermal characteristics of soil on the Loess Plateau, China 被引量:3
7
作者 CHOU Ya-ling WANG Li-jie 《Journal of Mountain Science》 SCIE CSCD 2021年第11期3082-3098,共17页
In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China wa... In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China was carried out to analyze the freezing-thawing process and hydrothermal characteristics of shallow soil considering the climate influence.The results show that the maximum seasonal freezing depth under bare ground surface in this area is from 20 cm to 50 cm.The ground temperature shows a similar changing trend with air temperature,but it has lagged behind the air temperature,and the ground temperature amplitude exponentially decreases with the increase of soil depth.The seasonally frozen soil has experienced four typical stages:unfrozen period,alternate freezing period,freezing period and alternate thawing period.The freezing-thawing process is characterized by unidirectional freezing and bidirectional thawing.The water content of shallow soil is significantly affected by air temperature,evaporation and precipitation,and the soil water content shows a"low-high-low"changing trend with the increase of depth.The soil temperature and water content interact with each other,and are often coupled.The variation trend of soil moisture with time is consistent with the change trend of the ground temperature with time in each soil layer,andthe degree of consistency is higher in the near surface soil than that in the lower layer.Also,the spatial-temporal characteristics of soil moisture and temperature is that the volumetric water content and ground temperatureof near surface soil have strong variability,and the range valueKa and coefficient of variation Cvof soil water content and ground temperaturein different seasons show a decreasing trend with the increase of depth. 展开更多
关键词 seasonally frozen soil Freezing-thawing process Hydrothermal characteristics Loess Plateau
下载PDF
Vibration characteristics of frozen soil under moving track loads
8
作者 AiPing Tang AnPing Zhao AiHua Wen 《Research in Cold and Arid Regions》 CSCD 2015年第4期414-420,共7页
Vibration due to moving traffic loads is an important factor which induces frozen soil damage; this paper analyzed these vibration characteristics of frozen soil foundation under track loads. Firstly, seismic observat... Vibration due to moving traffic loads is an important factor which induces frozen soil damage; this paper analyzed these vibration characteristics of frozen soil foundation under track loads. Firstly, seismic observation array (SOA) technology was applied to monitor the three dimensional dynamic characteristics of frozen soil under movable track load in a per- mafrost region and seasonal frozen soil area. Secondly, a numerical simulation for the response of frozen soil under movable track load was performed based on finite element analysis (FEA), The results show that dynamic characteristics of frozen soil in perpendicular and parallel direction of the track are obviously different. In the direction perpendicular to the track, the vertical acceleration amplitude had an abrupt increase in the 9-10 m from the track line. In the direction parallel to the track, the acceleration in vertical and horizontal direction had a quick attenuation compared to the other direction. Lastly, various parameters were analyzed for the purpose of controlling the dynamic response of frozen soil and the vibration attenuation in frozen soil layer. 展开更多
关键词 moving track load dynamic response seismic observation array (SOA) PERMAFROST seasonal frozen soil
下载PDF
Shear strength of frozen clay under freezing-thawing cycles using triaxial tests 被引量:8
9
作者 Wang Miao Meng Shangjiu +1 位作者 Sun Yiqiang Fu Haiqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期761-769,共9页
Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycl... Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results. 展开更多
关键词 seasonally frozen soil freezing-thawing cycles COHESION internal friction angle correction coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部