期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage
1
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
下载PDF
Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials
2
作者 Louis F.Marie Karina Sałek Tadhg S.O’Donovan 《Energy Engineering》 EI 2023年第10期2193-2209,共17页
Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about ... Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles. 展开更多
关键词 Composites thermochemical energy storage salt-in-porous-matrix zeolites seasonal storage
下载PDF
Numerical simulation and experimental verification of solar seasonal soil thermal storage
3
作者 张文雍 郑茂余 王潇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期35-40,共6页
To analyze the characteristics of solar seasonal soil thermal storage in a solar-ground coupled heat pump system (SGCHPS) in severe cold area,the software FLUENT was used to establish the three-dimensional unsteady st... To analyze the characteristics of solar seasonal soil thermal storage in a solar-ground coupled heat pump system (SGCHPS) in severe cold area,the software FLUENT was used to establish the three-dimensional unsteady state fluid-solid coupling mathematical model of multi-well ground heat exchanger (MWGHE).The User-Defined Functions (UDF) of solar collector and plate heat exchanger were written and dynamically loaded into the model of MWGHE as the boundary conditions.In this way,the dynamic simulation of solar seasonal soil thermal storage was realized.The comparison of simulative and experimental results showed that the overall variation trend of simulative and experimental values achieves a good agreement with time;the relative errors of simulated parameters are all in the allowable range.Therefore,it can be obtained that the models established can be applied in the investigation of performance of solar seasonal soil thermal storage.At the same time,it provides a theoretical basis for the study of heating in SGCHPS and soil heat balance analysis after long-time thermal storage and extraction. 展开更多
关键词 solar energy seasonal soil thermal storage FLUENT mathematical model experimental verification
下载PDF
Seasonal thermal energy storage using natural structures:GIS-based potential assessment for northern China
4
作者 Yichi Zhang Jianjun Xia 《Building Simulation》 SCIE EI CSCD 2024年第4期561-574,共14页
Seasonal thermal energy storage(STES)allows storing heat for long-term and thus promotes the shifting of waste heat resources from summer to winter to decarbonize the district heating(DH)systems.Despite being a promis... Seasonal thermal energy storage(STES)allows storing heat for long-term and thus promotes the shifting of waste heat resources from summer to winter to decarbonize the district heating(DH)systems.Despite being a promising solution for sustainable energy system,large-scale STES for urban regions is lacking due to the relatively high initial investment and extensive land use.To close the gap,this study assesses the potentials of using two naturally available structures for STES,namely valley and ground pit sites.Based on geographical information system(GIS)methods,the available locations are searched from digital elevation model and selected considering several criteria from land uses and construction difficulties.The costs of dams to impound the reservoir and the yielded storage capacities are then quantified to guide the choice of suitable sites.The assessment is conducted for the northern China where DH systems and significant seasonal differences of energy demand exist.In total,2,273 valley sites and 75 ground pit sites are finally identified with the energy storage capacity of 15.2 billion GJ,which is much larger than the existing DH demand in northern China.The results also prove that 682 valley sites can be achieved with a dam cost lower than 20 CNY/m^(3).By conducting sensitivity analysis on the design dam wall height and elevations,the choices of available natural structures are expanded but practical issues about water pressures and constructions are also found.Furthermore,the identified sites are geographically mapped with nearest urban regions to reveal their roles in the DH systems.In general,560 urban regions are found with potential STES units and most of them have STES storage capacities larger than their own DH demand.The novel planning methodology of this study and publicly available datasets create possibilities for the implementations of large-scale STES in urban DH systems. 展开更多
关键词 seasonal thermal energy storage geographical information system district heating water reservoir
原文传递
Influence of geometry on the thermal performance of water pit seasonal heat storages for solar district heating 被引量:1
5
作者 Yakai Bai Ming Yang +4 位作者 Jianhua Fan Xiaoxia Li Longfei Chen Guofeng Yuan Zhifeng Wang 《Building Simulation》 SCIE EI CSCD 2021年第3期579-599,共21页
The aim of the study is to investigate the influence of geometry on the thermal capacity and stratifications of a water pit heat storage for solar district heating.A TRNSYS component model for a truncated cone water p... The aim of the study is to investigate the influence of geometry on the thermal capacity and stratifications of a water pit heat storage for solar district heating.A TRNSYS component model for a truncated cone water pit was developed based on the coordinate transformation method and validated by experimental results from the water pit heat storage in Huangdicheng in 2018.The thermal performance of 26 water pits with different heights and side wall slopes was calculated for 10 consecutive years.It takes four to six years for the water pit to reach steady-state operation.The operation data from the tenth year was selected to evaluate the thermal performance of each configuration.The results show that because of the thermal insulation on top of the water pit,the height to diameter ratio of a water pit with minimum annual heat loss was always smaller than 1.0.The annual storage efficiency of a water pit increases with side wall slope due to the reduced side wall area.There is an almost linear increase in the thermal stratification number of a water pit with height.With an increase in the height,thermal stratification in water pits with a steeper slope increased more gradually than water pits with a lower slope.The findings in this paper are relevant for the design optimization of water pits as seasonal thermal energy storages. 展开更多
关键词 water pit seasonal heat storage truncated cone storage capacity thermal stratification coordinate transformation
原文传递
Numerical simulation of underground seasonal cold energy storage for a 10 MW solar thermal power plant in north-western China using TRNSYS
6
作者 Zulkarnain ABBAS Yong LI Ruzhu WANG 《Frontiers in Energy》 SCIE CSCD 2021年第2期328-344,共17页
This paper aims to explore an efficient, cost-effective, and water-saving seasonal cold energy storage technique based on borehole heat exchangers to cool the condenser water in a 10 MW solar thermal power plant. The ... This paper aims to explore an efficient, cost-effective, and water-saving seasonal cold energy storage technique based on borehole heat exchangers to cool the condenser water in a 10 MW solar thermal power plant. The proposed seasonal cooling mechanism is designed for the areas under typical weather conditions to utilize the low ambient temperature during the winter season and to store cold energy. The main objective of this paper is to utilize the storage unit in the peak summer months to cool the condenser water and to replace the dry cooling system. Using the simulation platform transient system simulation program (TRNSYS), the borehole thermal energy storage (BTES) system model has been developed and the dynamic capacity of the system in the charging and discharging mode of cold energy for one-year operation is studied. The typical meteorological year (TMY) data of Dunhuang, Gansu province, in north-western China, is utilized to determine the lowest ambient temperature and operation time of the system to store cold energy. The proposed seasonal cooling system is capable of enhancing the efficiency of a solar thermal power plant up to 1.54% and 2.74% in comparison with the water-cooled condenser system and air-cooled condenser system respectively. The techno-economic assessment of the proposed technique also supports its integration with the condenser unit in the solar thermal power plant. This technique has also a great potential to save the water in desert areas. 展开更多
关键词 seasonal cold energy storage borehole heat exchangers typical meteorological data TRNSYS condenser cooling techno-economic assessment
原文传递
Possibilities of Reducing Energy Consumption by Optimization of Ground Source Heat Pump Systems in Babylon, Iraq
7
作者 Jenny Lindblom Nadhir Al-Ansari Qais Al-Madhlom 《Engineering(科研)》 2016年第3期130-139,共10页
Iraq is located in the Middle East with an area that reaches 437,072 km2 and a population of about 36 million. This country is suffering from severe electricity shortage problems which are expected to increase with ti... Iraq is located in the Middle East with an area that reaches 437,072 km2 and a population of about 36 million. This country is suffering from severe electricity shortage problems which are expected to increase with time. In this research, an attempt is made to minimize this problem by combining the borehole thermal energy storage (BTES) with a heat pump, the indoor temperature of a residential building or other facility may be increased or reduced beyond the temperature interval of the heat carrier fluid. Due to the relatively high ground temperature in Middle Eastern countries, the seasonal thermal energy storages (STES) and ground source heat pump (GSHP) systems have a remarkable potential, partly because the reduced thermal losses from the underground storage and the expected high COP (ratio of thermal energy gain to required driving energy (electricity)) of a heat pump, partly because of the potential for using STES directly for heating and cooling. In this research, groundwater conditions of Babylon city in Iraq were investigated to evaluate the possibility of using GSHP to reduce energy consumption. It is believed that such system will reduce consumed energy by about 60%. 展开更多
关键词 Ground Source Heat Pump seasonal Thermal Energy storages Energy Saving BABYLON Iraq
下载PDF
Vegetative Storage Protein with Trypsin Inhibitor Activity Occurs in Sapindus mukorassi,a Sapindaceae Deciduous Tree 被引量:2
8
作者 Shi-Biao Liu Xu-Chu Wang +3 位作者 Min-Jing Shi Yue-Yi Chen Zheng-Hai Hu Wei-Min Tian 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第4期352-359,共8页
A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree, Sapindus mukorassi, was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western-blot, immu... A vegetative storage protein (VSP) with trypsin inhibitor activity in a deciduous tree, Sapindus mukorassi, was characterized by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western-blot, immuno-histochemical localization, light- and electro-microscopy, together with analysis of proteinase inhibitor activity of the purified VSP in vitro. There were two proteins with molecular masses of about 23 and 27 kDa in a relatively high content in the bark tissues of terminal branches of S. mukorassi in leafless periods. The proteins decreased markedly during young shoot development, indicating their role in seasonal nitrogen storage. Immuno-histochemical localization with the polyclonal antibodies raised against the 23 kDa protein demonstrated that the 23 kDa protein was the major component of protein inclusions in protein-storing cells. The protein inclusions were identified by protein-specific staining and should correspond to the electron-dense materials in different forms in the vacuoles of phloem parenchyma cells and phloem ray parenchyma cells under an electron microscope. So, the 23 kDa protein was a typical VSP in S. mukorassi. The 23 and 27 kDa proteins shared no immuno-relatedness, whereas the 23 kDa protein was immuno-related with the 22 kDa VSP in lychee and possessed trypsin inhibitor activity. The 23 kDa protein may confer dual functions: nitrogen storage and defense. 展开更多
关键词 annual growth cycle Chinese soapberry IMMUNO-LOCALIZATION seasonal nitrogen storage trypsin inhibitor.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部