期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of simulating deep-sea environmental factors on cathodic performance of seawater battery 被引量:2
1
作者 LU Yonghong YANG Lulu +4 位作者 ZHANG Yue ZHAO Qing SANG Lin DING Fei XU Haibo 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第2期334-341,共8页
A metal-dissolved oxygen seawater battery(SWB)uses metal and dissolved oxygen as the reactants,and it is ideal for use as a long-time low-power distributed power supply in deep sea,due to its advantages of open struct... A metal-dissolved oxygen seawater battery(SWB)uses metal and dissolved oxygen as the reactants,and it is ideal for use as a long-time low-power distributed power supply in deep sea,due to its advantages of open structure in service without electrolyte.However,several simulating deep-sea environmental factors,such as flow rate,dissolved oxygen concentration,and temperature of seawater may af fect the oxygen reduction reaction(ORR)rate and the stability of electrochemically modified polyacrylonitrile-based carbon fiber brush(MPAN-CFB)cathode,which was studied by steady-state polarization and galvanostatic discharge methods.In addition,the scales formed on MPAN-CFB surface were characterized by SEM and XRD.Results show that the ORR rate increased quickly with the increase of the seawater flow rate up to 3 cm/s,and then gradually stabilized.Moreover,the ORR rate was largely af fected by dissolved oxygen concentration,and the concentration of>3 mg/L was favorable.Compared with surface layer temperature of 15℃,the low temperature of deep sea(4℃)has a negligible ef fect on ORR rate.When the working current is too high,it will lead to the formation of CaCO_3 scales(aragonite)of at the cathodic surface,resulting in the decrease of ORR rate,and consequently the damage to the long-time stability of MPAN-CFB. 展开更多
关键词 seawater battery(SWB) deep sea modified polyacrylonitrile-based carbon fiber brush(MPANCFB) oxygen reduction reaction(ORR) scale formation
下载PDF
Effect of tin addition on microstructure and electrochemical properties of rolled AZ61-Sn magnesium anodic materials
2
作者 WANG Ping LI Jianping GUOYongchun YANG Zhong XIA Feng WANG Jianli 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期639-643,共5页
Microstructure characterization, corrosion behavior, and electrochemical properties of magnesium anode materials containing 1-3 wt.% Sn in AZ61 alloy were studied by optical microscopy, X-ray diffraction (XRD), scan... Microstructure characterization, corrosion behavior, and electrochemical properties of magnesium anode materials containing 1-3 wt.% Sn in AZ61 alloy were studied by optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spec- troscopy (EDS), constant current method, potential polarization, and drainage. The results showed that amount of Mg2Sn phase increased, and recrystallization ratio of Sn-contained Mg alloys during rolling process was improved with increasing of Sn content. This resulted in uniform and refined gains. The results also demonstrated that discharge potential was improved and hydrogen release rate was reduced with the addition of Sn. As the current density increased, the release hydrogen rate was rising, owing to negative variance effect of magnesium alloys. The current efficiency gets to 87% at 20 mA/cm2. The main components of the corrosion products are easy-to-peel-off MgO and Al2O3 that can lead to more negative and stable work potential and accelerate battery reaction continuously. 展开更多
关键词 magnesium alloys anode material ROLLING seawater battery electrochemistry property
下载PDF
电子轴向拉伸提升贫氧环境海水电池性能
3
作者 唐全骏 白亮 +11 位作者 张辰 孟蓉炜 王莉 耿传楠 郭勇 王飞飞 刘颖馨 宋贵生 凌国维 孙海涛 翁哲 杨全红 《Science Bulletin》 SCIE EI CAS CSCD 2023年第24期3172-3180,M0005,共10页
长寿命溶解氧海水电池是深远海观测能源网络的重要组成单元,但海水贫氧复杂环境对设计高性能氧还原催化剂提出了重要挑战.本文以酞菁铁为模型催化剂,通过理论计算与实验验证,提出了活性位点电子轴向拉伸可大幅提升催化剂在极端贫氧环境... 长寿命溶解氧海水电池是深远海观测能源网络的重要组成单元,但海水贫氧复杂环境对设计高性能氧还原催化剂提出了重要挑战.本文以酞菁铁为模型催化剂,通过理论计算与实验验证,提出了活性位点电子轴向拉伸可大幅提升催化剂在极端贫氧环境中的氧还原活性和稳定性.该研究为构建高性能海水电池提供了材料学解决方案,同时为极端环境下催化剂的变革性设计提供了新的思路. 展开更多
关键词 seawater batteries Iron phthalocyanine Axial stretching Oxygen reduction reaction ELECTROCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部