期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental and modeling study of wettability alteration through seawater injection in limestone:a case study 被引量:1
1
作者 Omolbanin Seiedi Mohammad Zahedzadeh +2 位作者 Emad Roayaei Morteza Aminnaji Hossein Fazeli 《Petroleum Science》 SCIE CAS CSCD 2020年第3期749-758,共10页
Water flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs.The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate rese... Water flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs.The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs.During seawater injection in carbonate formations,the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition.This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years.The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique.Further,the characterization of the rock surface is evaluated by molecular kinetic theory(MKT)modeling.The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process.While the wettability of low permeable samples changes to be slightly water-wet,the wettability of the samples with higher permeability remains unchanged after soaking in seawater.Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant. 展开更多
关键词 WETTABILITY Carbonate rock seawater injection Dynamic contact angle Rise in Core Molecular kinetic theory
下载PDF
Validation of Autonomous Microbe Sensor Prototype for Monitoring of Microorganisms in Injection Seawater Systems 被引量:1
2
作者 Mohammed A. Al-Moniee Xiangyang Zhu +5 位作者 Lone Tang Fuad I. Nuwaiser Niels V. Voigt Peter F. Sanders Fahad N. Al-Abeedi Hanaa H. Al-Habboubi 《Journal of Sensor Technology》 2016年第4期81-100,共21页
Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced inj... Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced injectivity, reservoir plugging, production downtime, and extensive repair costs. Monitoring of system microbiology is required in any mitigation strategy, enabling operators to apply and adjust countermeasures properly and in due time. In previous studies [1] [2], DNA staining technology with SYBR Green dye was evaluated to have a sufficient detection limit and automation potential for real-time detection of microbial activity in the Saudi Aramco injection seawater. In this study, technical requirements and design solutions were defined, and an autonomous microbe sensor (AMS) prototype was constructed, tested and optimized in the laboratory, and validated in the field for automated detection of microorganisms in the harsh Saudi Arabia desert environment and injection seawater. The AMS prototype was able to monitor and follow the general microbial status in the system, including detection of periods with increased microbial growth or decreased microbial numbers following biocide injection. The infield AMS detection limit was 10<sup>5</sup> cells/mL. The long-term field testing also identified the areas for technical improvement and optimization for further development of a more robust and better performing commercial microbial sensing device. 展开更多
关键词 DNA Staining Automated Monitoring Autonomous Microbe Sensor Microbial Sensor Prototype injection seawater
下载PDF
Applicability of Dimedone Assays for the Development of Online Aldehyde Sensor in Seawater Flooding Systems
3
作者 Mohammed A. Al-Moniee Cees Koopal +6 位作者 Naim Akmal Sjaak van Veen Xiangyang Zhu Peter F. Sanders Peter F. Sanders Fahad N. Al-Abeedi Ayman M. Amer 《Journal of Sensor Technology》 2016年第4期101-109,共10页
Biocides are oilfield chemicals that are widely used to control bacterial activity throughout the oil industry. A feasibility study has been explored to develop detection techniques for biocide batch treatments, prefe... Biocides are oilfield chemicals that are widely used to control bacterial activity throughout the oil industry. A feasibility study has been explored to develop detection techniques for biocide batch treatments, preferably on-line and in real-time, for their potential use in seawater flooding system. Several methods to measure key components of the biocide formulation were investigated and reported in previous study [1]. The enzymatic activity of an immobilized acetylcholine esterase (AChE) on the column material was successfully inhibited by some model compounds, but not by the actual biocides commonly used in Saudi Aramco seawater flooding system. In this paper, an alternative assay for biocide detection in the Saudi Aramco seawater flooding system was investigated for its applicability for the development of on-line biocide sensor. The assay was based on the detection of aldehyde functionality in the biocide mixture through measurement of a fluorescent derivative formed in the reaction of aldehyde groups and dimedone in the presence of ammonium acetate. The reaction of aldehyde groups with dimedone was demonstrated in seawater matrix, and the formed fluorescent product was successfully measured. The results showed that the dimedone-based assay was very sensitive, and relatively straightforward to perform. The ruggedness test also indicated that the assay is sensitive to minor changes of various specific conditions of the method. It is concluded that the dimedone assay is suitable for further development of a real-time biocide monitoring system to detect the presence of biocide slugs in seawater flooding system. The development of an automated on-line biocide sensor based on dimedone assay is underway. 展开更多
关键词 DNA Staining Automated Monitoring Autonomous Microbe Sensor Microbial Sensor Prototype injection seawater
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部