The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are p...The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.展开更多
Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency d...Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.展开更多
The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room te...The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.展开更多
Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical inform...Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical information processing.Alternatively,a simple uniaxial crystal can be used to simultaneously generate four OAM states of light through the second harmonic generation and cascaded optical spin-orbit interaction(SOI)processes.However,two of the OAM states realized in the crystal are very weak and limit the practical applications.Here,we aim to circumvent this constraint by using the sequential optical SOI processes in two crystals with threefold rotational symmetry.Four angular momentum states of the fundamental waves are prepared after the first crystal and then are utilized to generate the corresponding second harmonic waves(SHWs)with opposite spin and doubled OAM in the second crystal.Further through a sequential SOI process,totally eight angular momentum states of the SHWs with nearly equal energy are experimentally observed.The proposed methodology may find potential applications in optical communications,parallel optical computing,optical manipulation and so on.展开更多
Thin-film lithium niobate is a promising material platform for integrated nonlinear photonics,due to its high refractive index contrast with the excellent optical properties.However,the high refractive index contrast ...Thin-film lithium niobate is a promising material platform for integrated nonlinear photonics,due to its high refractive index contrast with the excellent optical properties.However,the high refractive index contrast and correspondingly small mode field diameter limit the attainable coupling between the waveguide and fiber.In second harmonic generation processes,lack of efficient fiber-chip coupling schemes covering both the fundamental and second harmonic wavelengths has greatly limited the overall efficiency.We design and fabricate an ultra-broadband tri-layer edge coupler with a high coupling efficiency.The coupler allows efficient coupling of 1 dB∕facet at 1550 nm and 3 dB∕facet at 775 nm.This enables us to achieve an ultrahigh overall second harmonic generation normalized efficiency(fiber-to-fiber)of 1027%W^(−1)cm^(−2)(on-chip second harmonic efficiency∼3256%W^(−1)cm^(−2))in a 5-mm-long periodically-poled lithium niobate waveguide,which is two to three orders of magnitude higher than that in state-of-the-art devices.展开更多
Multiphoton microscopy(MPM),based on two-photon excited fuorescence and second harmonic generation,enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the admini...Multiphoton microscopy(MPM),based on two-photon excited fuorescence and second harmonic generation,enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the administration of exogenous contrast agents.In this paper,we used MPM to image the microstructures of the mucosa in fresh,unfixed,and unstained intestinal tissue of mouse.The morphology and distribution of the main components in mucosa layer such as columnar cells,goblet cells,intestinal glands,and a little collagen fibers were clearly observed in MPM images,and then compared with standard H&:E images from paired specimens.Our results indicate that MPM combined with endoscopy and miniaturization probes has the potential application in the clinical diagnosis and in vivo monitoring of early intestinal cancer.展开更多
The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic gene...The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic generation (SHG) and sum frequency generation-vibrational spec- troscopy (SFG-VS) have been successfully applied through analysis of the nonlinear signal from various polarizations. In some SHG and SFG-VS experiments, total internal reflection (TIR) configuration has been adopted to get enhanced signals. However, the reports on the detailed procedure of the polarization analysis and the calculation of the orientation angle of interracial molecules under TIR configuration are still very few. In this paper, we mea- sured the orientation angles of two molecules at the hexadecane-water interface under TIR and Non-TIR experimental configurations. The results measured from polarization analysis in TIR configuration consist with those obtained from Non-TIR configuration. This work demonstrates the feasibility and accuracy of polarization analysis in the determination of the orientation angle of molecules at the interfaces under TIR-SHG configuration.展开更多
Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to ...Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.展开更多
Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic pa...Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized secondharmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.展开更多
This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and...This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.展开更多
This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a...This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.展开更多
Here we propose a hybrid polymer-LN waveguide for achieving phase-matched second-harmonic generation(SHG).From the aspect of super-mode theory,the geometric parameters of the hybrid semi-nonlinear waveguide were optim...Here we propose a hybrid polymer-LN waveguide for achieving phase-matched second-harmonic generation(SHG).From the aspect of super-mode theory,the geometric parameters of the hybrid semi-nonlinear waveguide were optimized to utilize both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves so as to facilitate phase matching with large modal overlap.Phase matching between a fundamental even(TE_(00)-like)mode at 1320 nm and a fundamental odd(TE_(01)-like)mode at 660 nm was found with a calculated modal overlap integral of 0.299,while utilizing the largest nonlinear coefficient d_(33),and achieving an efficient calculated normalized conversion efficiency of 148%W^(-1)·cm^(-2).Considering the fabrication feasibility of such hybrid waveguide with features including etchless,large dimension,and low structural sensitivity,we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.展开更多
Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterizatio...Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.展开更多
Functionalized black phosphorus(BP)nanosheets have been considered as promising nanoagents in cancer therapy due to their excellent photothermal conversion efficiency.However,it is still difficult to visually monitor ...Functionalized black phosphorus(BP)nanosheets have been considered as promising nanoagents in cancer therapy due to their excellent photothermal conversion efficiency.However,it is still difficult to visually monitor the dynamic localization of BP nanoagents in cancer cells.In this paper,we systematically studied the second-harmonic generation(SHG)signals originating from exfoliated BP nanosheets.Interestingly,under the excitation of a high frequency pulsed laser at 950 nm,the SHG signals of BP nanosheets in vitro are almost undetectable because of their poor stability.However,the intracellular SHG signals from BP nanosheets could be measured by in vivo optical imaging due to the efficient enrichment of living HeLa cells.Moreover,the SHG signal intensity from BP nanosheets increases with the prolonged incubation time.It can be expected that the BP nanosheets could be a promising intracellular SHG nanoprobe employed for visually in vivo biomedical imaging in practical cancer photothermal therapy(PIT).展开更多
A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% resp...A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.展开更多
The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimens...The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimensional finite-difference time-domain (FDTD) method. The results show that off-axis backward-propagating SH response can be reinforced by tightly focusing, due to the increase of the relative magnitude of the longitudinal field component and the phase shift along the propagation direction.展开更多
The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Se...The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.展开更多
Broadband nonlinear frequency conversions of optical waves are widely employed in multiple areas of optics and photonics. However, the broadening of conversion bandwidth is often at a cost of reduction in efficiency, ...Broadband nonlinear frequency conversions of optical waves are widely employed in multiple areas of optics and photonics. However, the broadening of conversion bandwidth is often at a cost of reduction in efficiency, which may induce a limitation on practical applications. Here we theoretically propose a novel design of LiNbO_(3) ridge waveguides on LiTaO_(3) substrates which can be used for efficient and broadband second harmonic generation. Through group velocity engineering of the ridge waveguides, acceptance bandwidth over 20 nm with a high conversion efficiency of > 25%W^(-1)·cm^(-2) is achieved at telecom-band.展开更多
Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and th...Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.展开更多
Si(111)electrode has been widely used in electrochemical and photoelectrochemical studies.The potential dependent measurements of the second harmonic generation(SHG)were performed to study Si(111)electrode interface.A...Si(111)electrode has been widely used in electrochemical and photoelectrochemical studies.The potential dependent measurements of the second harmonic generation(SHG)were performed to study Si(111)electrode interface.At different azimuthal angles of the Si(111)and under different polarization combinations,the curve of the intensity of SHG with extern potential has a different form of line or parabola.Quantitative analysis showed that these differences in the potential-dependence can be explained by the isotropic and anisotropic contribution of the Si(111)electrode.The change in the isotropic and anisotropic contribution of the Si(111)electrode may be attributed to the increase in the doping concentration of Si(111)electrodes.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51325504,11474093,11622430 and 11474361the National Key Research and Development Program of China(2016YFC0801903-02)the Fundamental Research Funds for the Central Universities
文摘The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.
文摘Silica glasses doped with Bi2S3 microcystallite was prepared by the sol-gel process. Photoinduced second harmonic generation (SHG) was observed in the glass when it was irradiated with intense 1.06 mum and frequency doubled laser beams from a mode-locked Nd: YAG laser. It was found that the signal intensity increased with the irradiating time and approached a saturation gradually. The effect may be explained reasonably by the DC field model.
基金financial supports from the National Natural Science Foundation of China(Grant No.11604150)Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2020J010)M.Rahmani.acknowledges support from the UK Research and Innovation Future Leaders Fellowship(MR/T040513/1)。
文摘The emergence of two dimensional(2D)materials has opened new possibilities for exhibiting second harmonic genera-tion(SHG)at the nanoscale,due to their remarkable optical response related to stable excitons at room temperature.However,the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides(TM-Ds)monolayers naturally weak.Here,we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum(BIC).The BIC slabs are designed to exhibit a pair of BICs,reson-ant with both the fundamental wave(FW)and the second harmonic wave(SHW).Firstly,the spatial mode matching can be fulfilled by tilting FW's incident angle.We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs,under a pump light intensity of 0.1 GW/cm^(2).Moreover,we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient,which leads to an extra three orders of magnitude enhancement of SHG efficiency.These results demonstrate remarkable pos-sibilities for enhancing SHG with nonlinear 2D materials,opening many opportunities for chip-based light sources,nano-lasers,imaging,and biochemical sensing.
基金supported by National Natural Science Foundation of China Grants(91950114&12161141010)National Key Technologies R&D Program of China(2022YFA1404301)+1 种基金Guangdong Provincial Innovation and Entrepreneurship Project Grant(2017ZT07C071)Natural Science Foundation of Shenzhen Innovation Commission Grant(JCYJ20200109140808088).
文摘Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical information processing.Alternatively,a simple uniaxial crystal can be used to simultaneously generate four OAM states of light through the second harmonic generation and cascaded optical spin-orbit interaction(SOI)processes.However,two of the OAM states realized in the crystal are very weak and limit the practical applications.Here,we aim to circumvent this constraint by using the sequential optical SOI processes in two crystals with threefold rotational symmetry.Four angular momentum states of the fundamental waves are prepared after the first crystal and then are utilized to generate the corresponding second harmonic waves(SHWs)with opposite spin and doubled OAM in the second crystal.Further through a sequential SOI process,totally eight angular momentum states of the SHWs with nearly equal energy are experimentally observed.The proposed methodology may find potential applications in optical communications,parallel optical computing,optical manipulation and so on.
基金sponsored by the National Key R&D Program of China(Grant No.2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.11690031 and 11761131001).
文摘Thin-film lithium niobate is a promising material platform for integrated nonlinear photonics,due to its high refractive index contrast with the excellent optical properties.However,the high refractive index contrast and correspondingly small mode field diameter limit the attainable coupling between the waveguide and fiber.In second harmonic generation processes,lack of efficient fiber-chip coupling schemes covering both the fundamental and second harmonic wavelengths has greatly limited the overall efficiency.We design and fabricate an ultra-broadband tri-layer edge coupler with a high coupling efficiency.The coupler allows efficient coupling of 1 dB∕facet at 1550 nm and 3 dB∕facet at 775 nm.This enables us to achieve an ultrahigh overall second harmonic generation normalized efficiency(fiber-to-fiber)of 1027%W^(−1)cm^(−2)(on-chip second harmonic efficiency∼3256%W^(−1)cm^(−2))in a 5-mm-long periodically-poled lithium niobate waveguide,which is two to three orders of magnitude higher than that in state-of-the-art devices.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1115)the National Natural Science Foundation of China(Grant Nos.81271620,61275006,81101209,30970783).
文摘Multiphoton microscopy(MPM),based on two-photon excited fuorescence and second harmonic generation,enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the administration of exogenous contrast agents.In this paper,we used MPM to image the microstructures of the mucosa in fresh,unfixed,and unstained intestinal tissue of mouse.The morphology and distribution of the main components in mucosa layer such as columnar cells,goblet cells,intestinal glands,and a little collagen fibers were clearly observed in MPM images,and then compared with standard H&:E images from paired specimens.Our results indicate that MPM combined with endoscopy and miniaturization probes has the potential application in the clinical diagnosis and in vivo monitoring of early intestinal cancer.
文摘The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic generation (SHG) and sum frequency generation-vibrational spec- troscopy (SFG-VS) have been successfully applied through analysis of the nonlinear signal from various polarizations. In some SHG and SFG-VS experiments, total internal reflection (TIR) configuration has been adopted to get enhanced signals. However, the reports on the detailed procedure of the polarization analysis and the calculation of the orientation angle of interracial molecules under TIR configuration are still very few. In this paper, we mea- sured the orientation angles of two molecules at the hexadecane-water interface under TIR and Non-TIR experimental configurations. The results measured from polarization analysis in TIR configuration consist with those obtained from Non-TIR configuration. This work demonstrates the feasibility and accuracy of polarization analysis in the determination of the orientation angle of molecules at the interfaces under TIR-SHG configuration.
文摘Most irradiation studies in the hydrogen bonded ferroelectrics have been concentrated on the transient defects induced by ionising radiation, such as ultraviolet (UV) light, where the defects are closely related to the optical properties. But heavy ion beam irradiation effects have rarely been studied. The structural, optical, and non-linear optical properties of the doped crystals were analyzed with the characterization studies, such as powder XRD, UV-Visible and second harmonic generation (SHG) measurements, respectively. The results for doped KDP crystal were compared with the results of the pure KDP crystals. The experiment results showed that Li^3+ irradiation leads to the development of a well-defined surface H peak in dye doped KDP crystals. The stability of KDP single crystal was improved by doping organic dyes. The nano-islands of dye in KDP were likely to be dissolved and enhance the non-linear optical properties of these materials.
基金Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No A200406).
文摘Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized secondharmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.
基金supported by the Tiptop-Talent Fund from Harbin University of Science and Technology
文摘This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultra- short pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral band- widths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic [3-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806007)the National Natural Science Foundation of China (Grant Nos. 10574006,10634020 and 10821062)
文摘This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91850107 and 12174116)the National Key Research and Development Program of China(Grant No.2018YFA0306200)+3 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the Key Program of Guangzhou Scientific Research Special Project(Grant No.201904020013)the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the Fundamental Research Funds for the Central Universities。
文摘Here we propose a hybrid polymer-LN waveguide for achieving phase-matched second-harmonic generation(SHG).From the aspect of super-mode theory,the geometric parameters of the hybrid semi-nonlinear waveguide were optimized to utilize both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves so as to facilitate phase matching with large modal overlap.Phase matching between a fundamental even(TE_(00)-like)mode at 1320 nm and a fundamental odd(TE_(01)-like)mode at 660 nm was found with a calculated modal overlap integral of 0.299,while utilizing the largest nonlinear coefficient d_(33),and achieving an efficient calculated normalized conversion efficiency of 148%W^(-1)·cm^(-2).Considering the fabrication feasibility of such hybrid waveguide with features including etchless,large dimension,and low structural sensitivity,we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.
基金Project supported by Beijing Natural Science Foundation,China(Grant No.JQ19004)Beijing Excellent Talents Training Support,China(Grant No.2017000026833ZK11)+8 种基金the National Natural Science Foundation of China(Grant Nos.52025023,51991340,and 51991342)the National Key Research and Development Program of China(Grant Nos.2016YFA0300903 and 2016YFA0300804)the Key R&D Program of Guangdong Province,China(Grant Nos.2019B010931001,2020B010189001,2018B010109009,and 2018B030327001)the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100007219005)the Beijing Graphene Innovation Program(Grant No.Z181100004818003)Bureau of Industry and Information Technology of Shenzhen(Graphene platform 201901161512)Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06D348)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.KYTDPT20181011104202253)the China Postdoctoral Science Foundation(Grant No.2020M680177)。
文摘Nonlinear optical frequency mixing,which describes new frequencies generation by exciting nonlinear materials with intense light field,has drawn vast interests in the field of photonic devices,material characterization,and optical imaging.Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices.Here,we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS_(2) monolayer by van der Waals interfacial engineering.We found that,the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS_(2) monolayer and correspondingly suppress the second harmonic generation(SHG)intensity to 30%under band-gap resonance excitation.While with off-resonance excitation,the SHG intensity would enhance up to 130%,which is conjectured to be induced by the interlayer excitation between MoS_(2) and graphene.Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.
基金This work has been partially supported by the National Key R&D Program of China(2018YFC0910602)the National Natural Science Foundation of China(31771584/62075137/61775145/61525503/61620106016/61835009)+4 种基金Project of Department of Education of Guangdong Province(2016KCXTD007)Guangdong Basic and Applied Basic Research Foundation(2020A1515010377)Guangdong Province Key Area R&D Program(2019B110233004)Shenzhen Basic Research Project(JCYJ20170818100153423)Science Foundation of Shenzhen University(Grant No.2017000193).
文摘Functionalized black phosphorus(BP)nanosheets have been considered as promising nanoagents in cancer therapy due to their excellent photothermal conversion efficiency.However,it is still difficult to visually monitor the dynamic localization of BP nanoagents in cancer cells.In this paper,we systematically studied the second-harmonic generation(SHG)signals originating from exfoliated BP nanosheets.Interestingly,under the excitation of a high frequency pulsed laser at 950 nm,the SHG signals of BP nanosheets in vitro are almost undetectable because of their poor stability.However,the intracellular SHG signals from BP nanosheets could be measured by in vivo optical imaging due to the efficient enrichment of living HeLa cells.Moreover,the SHG signal intensity from BP nanosheets increases with the prolonged incubation time.It can be expected that the BP nanosheets could be a promising intracellular SHG nanoprobe employed for visually in vivo biomedical imaging in practical cancer photothermal therapy(PIT).
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774044)the National Key Basic Research and Development Program of China (Grant No. 2010CB922903)+1 种基金the Shanghai Pujiang Talent Program of China (Grant No. 07PJ14038)the Ph D Program Scholarship Fund of East China Normal University 2009 (Grant No. 2009049)
文摘A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378005)
文摘The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimensional finite-difference time-domain (FDTD) method. The results show that off-axis backward-propagating SH response can be reinforced by tightly focusing, due to the increase of the relative magnitude of the longitudinal field component and the phase shift along the propagation direction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60777024 and 60978007)
文摘The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.
文摘Broadband nonlinear frequency conversions of optical waves are widely employed in multiple areas of optics and photonics. However, the broadening of conversion bandwidth is often at a cost of reduction in efficiency, which may induce a limitation on practical applications. Here we theoretically propose a novel design of LiNbO_(3) ridge waveguides on LiTaO_(3) substrates which can be used for efficient and broadband second harmonic generation. Through group velocity engineering of the ridge waveguides, acceptance bandwidth over 20 nm with a high conversion efficiency of > 25%W^(-1)·cm^(-2) is achieved at telecom-band.
基金Project supported by the Taishan Scholars Youth Expert Program of Shandong Provincethe Qilu Young Scholar Program of Shandong University, China
文摘Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.
基金supported by the National Natural Science Foundation of China(No.21673251,No.21773258,No.21873104,and No.91856121)the Chinese Academy of Sciences(No.JKYYQ20180014)。
文摘Si(111)electrode has been widely used in electrochemical and photoelectrochemical studies.The potential dependent measurements of the second harmonic generation(SHG)were performed to study Si(111)electrode interface.At different azimuthal angles of the Si(111)and under different polarization combinations,the curve of the intensity of SHG with extern potential has a different form of line or parabola.Quantitative analysis showed that these differences in the potential-dependence can be explained by the isotropic and anisotropic contribution of the Si(111)electrode.The change in the isotropic and anisotropic contribution of the Si(111)electrode may be attributed to the increase in the doping concentration of Si(111)electrodes.