This paper discussses the random singular integral of random process with second order moment, establishes the concepts of the random singular integral and proves that it's a linear bounded operator of space Ha(L)...This paper discussses the random singular integral of random process with second order moment, establishes the concepts of the random singular integral and proves that it's a linear bounded operator of space Ha(L)(m, s). Then Plemelj formula and some other properties for random singular integral are proved.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don...The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.展开更多
Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
A simplified fragility analysis of fan type cable stayed bridges usingProbabilistic Risk Analysis (PRA) procedure is presented for determining their failure probabilityunder random ground motion. Seismic input to the ...A simplified fragility analysis of fan type cable stayed bridges usingProbabilistic Risk Analysis (PRA) procedure is presented for determining their failure probabilityunder random ground motion. Seismic input to the bridge support is considered to be a riskconsistent response spectrum which is obtained from a separate analysis. For the response analysis,the bridge deck is modeled as a beam supported on springs at different points. The stiffnesses ofthe springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysisprovides a coupled stiffness matrix for the spring system. A continuum method of analysis usingdynamic stiffness is Used to determine the dynamic properties of the bridges .The response of thebridge deck is obtained by the response spectrum method of analysis as applied to multi-degree offreedom system which duly takes into account the quasi - static component of bridge deck vibration.The fragility analysis includes uncertainties arising due to the variation in ground motion,material property, modeling, method of analysis, ductility factor and damage concentration effect.Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM)method of reliability. A three span double plane symmetrical fan type cable stayed bridge of totalspan 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure areobtained under a number of parametric variations. Some of the important conclusions of the studyindicate that (ⅰ) not only vertical component but also the horizontal component of ground motionhas considerable effect on the probability of failure; (ⅱ) ground motion with no time lag betweensupport excitations provides a smaller probability of failure as compared to ground motion with verylarge time lag between support excitation; and (ⅲ) probability of failure may considerablyincrease for soft soil condition.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β...Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.展开更多
To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is prop...To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and reliability assessment methods. It is shown through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
Based on the Simplified Bishop Method, the minimum safety factor of ice slope both with and without tension cracks is calculated in combination with triaxial compression tests. It is found that there exists a critical...Based on the Simplified Bishop Method, the minimum safety factor of ice slope both with and without tension cracks is calculated in combination with triaxial compression tests. It is found that there exists a critical depth for each crack. Then, factors influencing ice slope stability such as slope ratio, slope height, ice cohesion, internal friction angle, unit weight and temperature were analyzed. Meanwhile, a regression equation between the aforementioned factors and safety factor is obtained, with which sensitivity analysis is carried out. The performance function is built in combination with random distribution of physical and mechanical parameters to analyze the reliability index. The Advanced First Order Second Moment Method is employed on the solution to the perfor- mance function. The one-way coupling system of ice slope stability is therefore formed based on safety factor and reliability index. Finally, an illustrated example of ice slope is provided, which shows that failure probability is relatively high, up to 6.18%, alt- hough safety factor is 2.77. Thus, it is objective and reasonable to apply the coupled system method to the slope stability rating.展开更多
A reliability sensitivity analysis based on modal stress is presented and applied to predict the influence factors of parameters on drum brake.Firstly,the first 10 modes of prestress of the brake drum are performed in...A reliability sensitivity analysis based on modal stress is presented and applied to predict the influence factors of parameters on drum brake.Firstly,the first 10 modes of prestress of the brake drum are performed in the software ANSYS Workbench.According to the results of brake noise research,it can be detected whether the drum brake meets the results that the noise frequency range of 500-1000 Hz.The reliability sensitivity design of mechanical parts based on the normal distribution parameters for complex mechanical system is discussed.Secondly,according to the first order second moment(FOSM)theory on reliability,the reliability sensitivity of drum brake is analyzed and calculated,and compared with the Monte Carlo(MC)numerical simulation results,The variation rules of reliability sensitivity is given,which provides a theoretical basis for the design of drum brake.展开更多
This paper applies exponentially fitted trapezoidal scheme to a stochastic oscillator. The scheme is convergent with mean-square order 1 and symplectic. Its numerical solution oscillates and the second moment increase...This paper applies exponentially fitted trapezoidal scheme to a stochastic oscillator. The scheme is convergent with mean-square order 1 and symplectic. Its numerical solution oscillates and the second moment increases linearly with time. The numerical example verifies the analysis of the scheme.展开更多
基金The project is supported by the NSF of China (10271098)Education Foundation of Fujian (JB02083) Science & Technical Development Foundation of Fuzhou University (2003xy-11).
文摘This paper discussses the random singular integral of random process with second order moment, establishes the concepts of the random singular integral and proves that it's a linear bounded operator of space Ha(L)(m, s). Then Plemelj formula and some other properties for random singular integral are proved.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
文摘The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.
文摘A simplified fragility analysis of fan type cable stayed bridges usingProbabilistic Risk Analysis (PRA) procedure is presented for determining their failure probabilityunder random ground motion. Seismic input to the bridge support is considered to be a riskconsistent response spectrum which is obtained from a separate analysis. For the response analysis,the bridge deck is modeled as a beam supported on springs at different points. The stiffnesses ofthe springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysisprovides a coupled stiffness matrix for the spring system. A continuum method of analysis usingdynamic stiffness is Used to determine the dynamic properties of the bridges .The response of thebridge deck is obtained by the response spectrum method of analysis as applied to multi-degree offreedom system which duly takes into account the quasi - static component of bridge deck vibration.The fragility analysis includes uncertainties arising due to the variation in ground motion,material property, modeling, method of analysis, ductility factor and damage concentration effect.Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM)method of reliability. A three span double plane symmetrical fan type cable stayed bridge of totalspan 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure areobtained under a number of parametric variations. Some of the important conclusions of the studyindicate that (ⅰ) not only vertical component but also the horizontal component of ground motionhas considerable effect on the probability of failure; (ⅱ) ground motion with no time lag betweensupport excitations provides a smaller probability of failure as compared to ground motion with verylarge time lag between support excitation; and (ⅲ) probability of failure may considerablyincrease for soft soil condition.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
文摘Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.
基金the Nationa Natural Science Foundation of China (Grant No. 10377015)
文摘To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and reliability assessment methods. It is shown through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
基金supported by the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB3-19)the National key Basic Research Program of China (973 Program:No.2012CB026102)+4 种基金the Program for Innovative Research Group of Natural Science Foundation of China (No. 41121061)the Foundation of State Key Laboratory of Frozen Soil Engineering(SKLFSE-ZY-03)the foundation of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZY-03)the National Natural Science Foundation of China (40971045,41171060)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN301)
文摘Based on the Simplified Bishop Method, the minimum safety factor of ice slope both with and without tension cracks is calculated in combination with triaxial compression tests. It is found that there exists a critical depth for each crack. Then, factors influencing ice slope stability such as slope ratio, slope height, ice cohesion, internal friction angle, unit weight and temperature were analyzed. Meanwhile, a regression equation between the aforementioned factors and safety factor is obtained, with which sensitivity analysis is carried out. The performance function is built in combination with random distribution of physical and mechanical parameters to analyze the reliability index. The Advanced First Order Second Moment Method is employed on the solution to the perfor- mance function. The one-way coupling system of ice slope stability is therefore formed based on safety factor and reliability index. Finally, an illustrated example of ice slope is provided, which shows that failure probability is relatively high, up to 6.18%, alt- hough safety factor is 2.77. Thus, it is objective and reasonable to apply the coupled system method to the slope stability rating.
基金supported by the Natural Science Foundation of Gansu Provincial Department of Science and Technology(No.18JR3RE422)。
文摘A reliability sensitivity analysis based on modal stress is presented and applied to predict the influence factors of parameters on drum brake.Firstly,the first 10 modes of prestress of the brake drum are performed in the software ANSYS Workbench.According to the results of brake noise research,it can be detected whether the drum brake meets the results that the noise frequency range of 500-1000 Hz.The reliability sensitivity design of mechanical parts based on the normal distribution parameters for complex mechanical system is discussed.Secondly,according to the first order second moment(FOSM)theory on reliability,the reliability sensitivity of drum brake is analyzed and calculated,and compared with the Monte Carlo(MC)numerical simulation results,The variation rules of reliability sensitivity is given,which provides a theoretical basis for the design of drum brake.
文摘This paper applies exponentially fitted trapezoidal scheme to a stochastic oscillator. The scheme is convergent with mean-square order 1 and symplectic. Its numerical solution oscillates and the second moment increases linearly with time. The numerical example verifies the analysis of the scheme.