An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculati...An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculation, the whitening matrix and the rotation matrix could be approximately obtained through the measurement of only one cost function. SimNations show goad performance of the algorithm.展开更多
Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the charact...Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.展开更多
This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configur...This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configuration for the structure with random distribution is briefly characterized.Secondly,the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell.Then,the statistical prediction algorithm based on the proposed two-scale model is described in detail.Finally,some numerical experiments are proposed,which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.展开更多
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach...Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.展开更多
In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and dis...In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.展开更多
This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of...This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.展开更多
We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification prob...We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification problem into a low-rank matrix approximation solution based on the QR decomposition of the received data matrix. Then, a fast recursive algorithm is developed based on the bi-iterative least squares (Bi-LS) subspace tracking method. The new algorithm requires only a computational complexity of O(md2) at each iteration, or even as low as O(md) if only equalization is necessary, where m is the dimension of the received data vector (or the row rank of channel matrix) and d is the dimension of the signal subspace (or the column rank of channel matrix). To overcome the shortcoming of the back substitution, an inverse QR iteration algorithm for subspace tracking and channel equalization is also developed. The inverse QR iteration algorithm is well suited for the parallel implementation in the systolic array. Simulation results are presented to illustrate the effectiveness of the proposed algorithms for the channel identification and equalization.展开更多
This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital ...This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital (SCLD) modulations in this scenario. Based on the new results concerning the generalized cyclostationarity of these signals in alpha-stable noise which are presented in this paper, we construct new modulation classification features without any priori information of carrier frequency and timing offset of the received signals, and use support vector machine (SVM) as classifier to discriminate OFDM from SCLD. Simulation results show that the recognition accuracy of the proposed algorithm can be up to 95% when the mix signal to noise ratio (MSNR) is up to ?1 dB.展开更多
基金This project was supported by the National 863 project (2001AA422420 -02)
文摘An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculation, the whitening matrix and the rotation matrix could be approximately obtained through the measurement of only one cost function. SimNations show goad performance of the algorithm.
文摘Based on the second order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave number spectrum of ocean waves. As an illustrative example, a fully developed wind generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
基金Project supported by the China Postdoctoral Science Foundation(Grant Nos.2015M580256 and 2016T90276)
文摘This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configuration for the structure with random distribution is briefly characterized.Secondly,the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell.Then,the statistical prediction algorithm based on the proposed two-scale model is described in detail.Finally,some numerical experiments are proposed,which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.
文摘Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.
文摘In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.
基金supported by the Special Funds for the National Basic Research Program of China(Grant No.2012CB025904)the National Natural ScienceFoundation of China(Grant Nos.90916027 and 11302052)
文摘This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.
基金Supported by the National Basic Research Program of China (Grant No. 2008CB317109)the National Natural Science Foundation of China(Grant No. 60572054)+1 种基金the Foundation of Authors of National Excellent Doctoral Dissertation (Grant No. 200239)the Scientific Research Foundation for Returned Scholars, Ministry of Education of China
文摘We present an adaptive algorithm for blind identification and equalization of single-input multiple-output (SIMO) FIR channels with second-order statistics. We first reformulate the blind channel identification problem into a low-rank matrix approximation solution based on the QR decomposition of the received data matrix. Then, a fast recursive algorithm is developed based on the bi-iterative least squares (Bi-LS) subspace tracking method. The new algorithm requires only a computational complexity of O(md2) at each iteration, or even as low as O(md) if only equalization is necessary, where m is the dimension of the received data vector (or the row rank of channel matrix) and d is the dimension of the signal subspace (or the column rank of channel matrix). To overcome the shortcoming of the back substitution, an inverse QR iteration algorithm for subspace tracking and channel equalization is also developed. The inverse QR iteration algorithm is well suited for the parallel implementation in the systolic array. Simulation results are presented to illustrate the effectiveness of the proposed algorithms for the channel identification and equalization.
文摘This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital (SCLD) modulations in this scenario. Based on the new results concerning the generalized cyclostationarity of these signals in alpha-stable noise which are presented in this paper, we construct new modulation classification features without any priori information of carrier frequency and timing offset of the received signals, and use support vector machine (SVM) as classifier to discriminate OFDM from SCLD. Simulation results show that the recognition accuracy of the proposed algorithm can be up to 95% when the mix signal to noise ratio (MSNR) is up to ?1 dB.