In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are usi...In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met...This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par...This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.展开更多
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ...This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).展开更多
In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilize...In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.展开更多
In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametri...In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the le...In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.展开更多
By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by ...By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.
文摘This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).
基金supported by National Natural Science Foundation of China (No.60504007)the PhD Programs Foundation of Ministry of Educationof China (No.20070286040)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.
文摘In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金supported by the National Natural Science Foundation of China(61203354)
文摘In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.
基金supported by the National Natural Science Foundation of China (Grant 11172199)
文摘By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.