锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池...锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。展开更多
电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。以18650三元锂电池为研究对象...电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。以18650三元锂电池为研究对象,采用基于二阶RC等效电路模型的多时间尺度DEKF算法,针对电池参数的慢变特性和状态的快变特性进行双时间尺度在线参数辨识和SOC估算;通过联邦城市驾驶计划(FUDS)测试验证,得出多时间尺度DEKF算法和传统离线辨识EKF算法对SOC估计的平均绝对误差分别为0.97%和2.46%,均方根误差为1.19%和2.69%,容量估计值对参考值最大误差仅为0.007 72 Ah;实验结果表明:所提出的多时间尺度DEKF算法,具有更好的鲁棒性和SOC估算精度并能实时反应SOH变化趋势。展开更多
为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算...为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。展开更多
文摘锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。
文摘电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。以18650三元锂电池为研究对象,采用基于二阶RC等效电路模型的多时间尺度DEKF算法,针对电池参数的慢变特性和状态的快变特性进行双时间尺度在线参数辨识和SOC估算;通过联邦城市驾驶计划(FUDS)测试验证,得出多时间尺度DEKF算法和传统离线辨识EKF算法对SOC估计的平均绝对误差分别为0.97%和2.46%,均方根误差为1.19%和2.69%,容量估计值对参考值最大误差仅为0.007 72 Ah;实验结果表明:所提出的多时间尺度DEKF算法,具有更好的鲁棒性和SOC估算精度并能实时反应SOH变化趋势。
文摘为了准确估算锂电池的剩余荷电状态(State of Charge,SOC),在2阶RC等效电路模型基础上,采用带遗忘因子递推最小二乘法(Forgetting Factor Recursive Least Square,FFRLS)对电池模型进行在线参数辨识,提高模型精度,联合扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)对锂电池的SOC进行估算。在MATLAB环境下进行模拟仿真,仿真结果表明:FFRLS算法辨识后电池模型得仿真电压与实际电压得最大误差为0.029,平均误差约为0.0006,联合EKF对SOC的估算误差在绝对值3%以内,其中最大误差绝对值为2.6%。