Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IP...Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.展开更多
基金Supported by the National Natural Science Foundation of China(21576053,91534106,21306025)the International S&T Cooperation Program of China(2013DFR90540)+3 种基金the Science Foundation of Distinguished Young Scholars of Fujian(2014J06004)the New Century Excellent Talents in Fujian Province University(JA12014)the Natural Science Foundation of Fujian Province(2016J01689)the Key Project of Fujian Provincial Department of Science and Technology(2014Y0066)
文摘Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.