The effect of equal-channel angular pressing(ECAP)processing at room temperature and 300℃on the distribution of the second phase particles and its influence on hardness and electrical conductivity of the commercial C...The effect of equal-channel angular pressing(ECAP)processing at room temperature and 300℃on the distribution of the second phase particles and its influence on hardness and electrical conductivity of the commercial Cu-0.81Cr-0.07Zr alloy were investigated.Microstructural characterization indicated that the area fraction of coarse Cr-rich particles decreased after ECAP processing.This reduction was attributed to the Cr dissolution induced by plastic deformation.The electrical conductivity of the alloy decreased by 12%after 4 ECAP passes at room temperature due to the increase of electrons scattering caused by higher Cr content in solid solution and higher density of defects in the matrix.These results were supported by the reduction of the Cu lattice parameter and by the exothermic reactions,during differential scanning calorimetry(DSC)analysis,observed only in the samples subjected to ECAP processing.Aging heat treatment after ECAP processing promoted an additional hardening effect and the complete recuperation of the electrical conductivity,caused by the re-precipitation of the partially dissolved particles.The better combination of hardness(191 HV)and electrical conductivity(83.5%(IACS))was obtained after 4 ECAP passes at room temperature and subsequent aging at 380℃for 1 h.展开更多
The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstruc...The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.展开更多
The second phase particle effect on texture evolution of polycrystalline material is studied through phase-field method. A unique field variable is introduced into the phase-field model to represent the second phase p...The second phase particle effect on texture evolution of polycrystalline material is studied through phase-field method. A unique field variable is introduced into the phase-field model to represent the second phase particles. Elastic interaction between particles and grains is also considered. Results indicate that in the presence of second phase particles the average particle diameter turns smaller than in the absence of these particles and retards texture formation by pinning effect. The second phase particles change the strain energy profile, which tremendously influences the pinning effect.展开更多
The second phase particle dispersed in microalloyed steel has different effects on grain growth depending on their size and volume fiaction of the second phase particles which will change during welding thermal cycles...The second phase particle dispersed in microalloyed steel has different effects on grain growth depending on their size and volume fiaction of the second phase particles which will change during welding thermal cycles. The particle coarsening and dissolution kinetics model was analyzed for continuous heating and cooling. In addition, based on experimental data, the coupled equation of grain growth was established by introducing limited size of grain growth with the consideration of the second phase particles pinning effects. Using Monte Carlo method based on experimental data model, the grain growth simulation for heat-affected zone of microalloyed steel welds was achieved. The calculating results were well in agreement with that of experiments.展开更多
On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed f...On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed from the applicability of grain boundary equation. Also, a new expression describing the interaction range has been derived, which solves the problem in theory that the interaction range between SPP and GB can only be qualitatively analyzed previously. It is shown that given the interaction position between SPP and GB, the interaction range can be quantitatively determined by use of this expression.展开更多
文章对Zr-Sn系锆合金中间工序管坯采用两种退火工序制备,采用扫描电镜(Scanning Electron Microscope,SEM)对其微观组织形貌进行观察,并对其第二相尺寸进行统计,最后对其腐蚀性能进行分析。SPPs统计结果表明,退火工序的选择对SPPs的尺...文章对Zr-Sn系锆合金中间工序管坯采用两种退火工序制备,采用扫描电镜(Scanning Electron Microscope,SEM)对其微观组织形貌进行观察,并对其第二相尺寸进行统计,最后对其腐蚀性能进行分析。SPPs统计结果表明,退火工序的选择对SPPs的尺寸形貌有显著影响,A样品内析出相的数量明显多于样品B,且尺寸相对较大。腐蚀结果表明,采用A工序退火的TREX管坯更耐均匀腐蚀。展开更多
The second phase in multi-phase alloys has connection with many important phenomena such as aging strengthening,dispersion strengthening,secondary hardening,crystal refinement.In this paper,the interface conjunction f...The second phase in multi-phase alloys has connection with many important phenomena such as aging strengthening,dispersion strengthening,secondary hardening,crystal refinement.In this paper,the interface conjunction factors of the interface between MC(M=V,Nb,Ti) and austenite and martensite are calculate out.The relationship between these factors and the characteristics are analyzed.The reason for the second phases being fine and dispersing and their strengthening and toughening effect on the alloy is explained using the relationship.Based on the relationship,the valence electron structure of the interface between the second phase particles and the matrix can be optimized by changing the alloying elements,which make it possible to design the composition of alloys from the valence electron structure of the second phase particles.展开更多
Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipi-tation of Ti(C,N) in deformed austenite and (Ti,Mo)C in ferrite of ferritic Ti-Mo microalloyed steel T...Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipi-tation of Ti(C,N) in deformed austenite and (Ti,Mo)C in ferrite of ferritic Ti-Mo microalloyed steel The size dis-tribution, amount and chemical composition of precipitates were obtained by using physicochemical phase analysis, and calculated according to thermodynamics and kinetics. The experimental results demonstrated that the incubation time was reduced with increasing Ti content, and prolonged with the addition of Mo. After 30 % deformation at 850 ℃, the nucleation of strain-induced Ti(C,N) was a relatively slow process. On the other hand, the temperature where the nucleation rate of (Ti, Mo)C in ferrite was the highest descended first and then ascended with increasing Ti content, and so did the temperature where the incubation time was the shortest. The key point is that the tempera-ture of steel containing about 0.09 % Ti is the lowest. The mass fraction of MC-type particles with size smaller than 10 nm in steel containing 0.09% Ti and 0.2% Mo reached 73.7%. The size distributions of precipitates in steel containing 0.09% Ti were relatively concentrated compared with that in steel containing 0.07% Ti.展开更多
In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy co...In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy indicated the formation of (Fe, Ni, Mn)17Y2 precipitates with hexagonal structure in a Fe-10Ni-7Mn-0.8Y (wt.%) alloy. Lattice parameters of these precipitates were calculated as follows:a=0.8485 nm and c=0.8274 nm. Formation of Y2O3 sub-micron particles was also confirmed in both yttrium bearing steels via electrolytic phase extraction method. The effect of these precipitates on the prior austenite grain size was investigated. The results revealed that these precipitates had an effective role in controlling the prior austenite grain size.展开更多
Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination s...Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination showed that coarse intermetallic particles were formed in the microstructure and their amounts changed with variations of the alloying elements. During warm rolling of thermome-chanical treatments prior to warm deformation, the coarse particles initiated cracks, decreasing the warm formability. For healing the crack damage and further improving the warm formability, a process of hot isothermal press was developed and optimized to the sheet alloys. With this process, the biaxial stretch formability at 350℃ was improved by 22% for an aluminum alloy containing a large amount of coarse particles.展开更多
Phase field models were established to simulate the grain growth of a nanostructured AZ31 magnesium alloy,which contain spherical particles of differing sizes and volume fractions, under realistic spatial and temporal...Phase field models were established to simulate the grain growth of a nanostructured AZ31 magnesium alloy,which contain spherical particles of differing sizes and volume fractions, under realistic spatial and temporal scales.The effect of the second phase particles on the nanostructure evolution was studied. The simulated results were compared with those of the conventional microstructured alloy.The expression of the local free energy density was improved by adding a second phase particle term. The right input parameters were selected for proper physical meaning. It was shown that the rules that govern the pinning effect of the second phase particles during the grain growth were different for the nanostructure and microstructure. There was a critical particle size value that affected the grain growth within the nanostructure. If the particle size was lower than the critical value, the pinning effect on grain growth increased with decreasing particle size. When the particle size was greater than the critical value, the particles had almost no pinning effect.However, in the conventional microstructured material,the larger particle size resulted in an enhanced pinning effect during grain growth for particle sizes smaller than 1 μm. The effect was reversed when the particle size was larger than the critical value. For the nanostructure, the critical value was200 nm when the particle content was 10 v.%, and the critical value decreased when the content increased. When the particle size was 30 nm, the particle pinning effect on the grain growth increased for increasing particle content.展开更多
Void nucleation within measured particle fields of an aluminum alloy is investigated to develop a continuum nucleation model which reflects nucleation at the individual particle scale. A nucleation model for heterogen...Void nucleation within measured particle fields of an aluminum alloy is investigated to develop a continuum nucleation model which reflects nucleation at the individual particle scale. A nucleation model for heterogeneous particle distributions is synchronized with the continuum model of Chu and Needleman using the average nucleation strain. The parameters in the continuum model are identified from the particle fields and are evaluated over the range of stress states observed in sheet metal forming. The synchronized continuum nucleation model achieves very good agreement with the nucleation trends for three measured particle fields in uniaxial tension, plane strain, and equal-biaxial tension.展开更多
滚动摩擦沉积增材(Additive Friction Rolling Deposition,AFRD)是一种新兴的金属固态增材制造技术,特别适用于基于熔合增材制造方法易产生凝固缺陷的高强度铝合金。采用AFRD方法进行2024-O铝合金增材,获得全致密无缺陷的四层增材试件,...滚动摩擦沉积增材(Additive Friction Rolling Deposition,AFRD)是一种新兴的金属固态增材制造技术,特别适用于基于熔合增材制造方法易产生凝固缺陷的高强度铝合金。采用AFRD方法进行2024-O铝合金增材,获得全致密无缺陷的四层增材试件,利用金相显微镜、扫描电子显微镜对不同旋转速度增材试件宏观形貌、微观组织进行了表征。结果表明:(1)沉积层组织致密,无夹杂、裂纹等缺陷、相邻两沉积层之间形成良好的冶金结合。(2)沉积层呈现细小的轴晶粒组织,随着旋转速度升高,晶粒尺寸呈下降趋势。(3)沉积层第二相粒子呈现点片状分布于Al基体上,随着转速增大,第二相粒子趋向于细化与均匀。展开更多
文摘The effect of equal-channel angular pressing(ECAP)processing at room temperature and 300℃on the distribution of the second phase particles and its influence on hardness and electrical conductivity of the commercial Cu-0.81Cr-0.07Zr alloy were investigated.Microstructural characterization indicated that the area fraction of coarse Cr-rich particles decreased after ECAP processing.This reduction was attributed to the Cr dissolution induced by plastic deformation.The electrical conductivity of the alloy decreased by 12%after 4 ECAP passes at room temperature due to the increase of electrons scattering caused by higher Cr content in solid solution and higher density of defects in the matrix.These results were supported by the reduction of the Cu lattice parameter and by the exothermic reactions,during differential scanning calorimetry(DSC)analysis,observed only in the samples subjected to ECAP processing.Aging heat treatment after ECAP processing promoted an additional hardening effect and the complete recuperation of the electrical conductivity,caused by the re-precipitation of the partially dissolved particles.The better combination of hardness(191 HV)and electrical conductivity(83.5%(IACS))was obtained after 4 ECAP passes at room temperature and subsequent aging at 380℃for 1 h.
基金financially supported by the National Key Research and Development Program of China(No 2016YFB0700505)the China’s State Grid Corporation of Science and Technology Projects(No.SGRI-WD71-13-002)+1 种基金the National Natural Science Foundation of China(Nos.51571020 and 51371030)the Nationa High Technology Research and Development Program of China(No.2015AA034201)
文摘The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Ports model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.
基金supported by the National Natural Science Foundation of China(Grant Nos.51174168,and 51274167)"111"Project,China(Grant No.B08040)
文摘The second phase particle effect on texture evolution of polycrystalline material is studied through phase-field method. A unique field variable is introduced into the phase-field model to represent the second phase particles. Elastic interaction between particles and grains is also considered. Results indicate that in the presence of second phase particles the average particle diameter turns smaller than in the absence of these particles and retards texture formation by pinning effect. The second phase particles change the strain energy profile, which tremendously influences the pinning effect.
文摘The second phase particle dispersed in microalloyed steel has different effects on grain growth depending on their size and volume fiaction of the second phase particles which will change during welding thermal cycles. The particle coarsening and dissolution kinetics model was analyzed for continuous heating and cooling. In addition, based on experimental data, the coupled equation of grain growth was established by introducing limited size of grain growth with the consideration of the second phase particles pinning effects. Using Monte Carlo method based on experimental data model, the grain growth simulation for heat-affected zone of microalloyed steel welds was achieved. The calculating results were well in agreement with that of experiments.
基金the financial support from the Supporting Plan for New Century Excellent Talents,MOE,China under grant No.NCET-04-0257the National Natural Science Foundation of China(No.50471070)the Natural Science Foundation of Shanxi Province(No.20051050).
文摘On the basis of the grain boundary equation by HeUman and corresponding analysis of Worner, this article deals with the interaction range between the second-phase particle (SPP) and grain boundary (GB) as viewed from the applicability of grain boundary equation. Also, a new expression describing the interaction range has been derived, which solves the problem in theory that the interaction range between SPP and GB can only be qualitatively analyzed previously. It is shown that given the interaction position between SPP and GB, the interaction range can be quantitatively determined by use of this expression.
文摘文章对Zr-Sn系锆合金中间工序管坯采用两种退火工序制备,采用扫描电镜(Scanning Electron Microscope,SEM)对其微观组织形貌进行观察,并对其第二相尺寸进行统计,最后对其腐蚀性能进行分析。SPPs统计结果表明,退火工序的选择对SPPs的尺寸形貌有显著影响,A样品内析出相的数量明显多于样品B,且尺寸相对较大。腐蚀结果表明,采用A工序退火的TREX管坯更耐均匀腐蚀。
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59631060) .
文摘The second phase in multi-phase alloys has connection with many important phenomena such as aging strengthening,dispersion strengthening,secondary hardening,crystal refinement.In this paper,the interface conjunction factors of the interface between MC(M=V,Nb,Ti) and austenite and martensite are calculate out.The relationship between these factors and the characteristics are analyzed.The reason for the second phases being fine and dispersing and their strengthening and toughening effect on the alloy is explained using the relationship.Based on the relationship,the valence electron structure of the interface between the second phase particles and the matrix can be optimized by changing the alloying elements,which make it possible to design the composition of alloys from the valence electron structure of the second phase particles.
基金Item Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China (2006BE03A0)
文摘Two types of stress relaxation tests were carried out to investigate the incubation time for incipient precipi-tation of Ti(C,N) in deformed austenite and (Ti,Mo)C in ferrite of ferritic Ti-Mo microalloyed steel The size dis-tribution, amount and chemical composition of precipitates were obtained by using physicochemical phase analysis, and calculated according to thermodynamics and kinetics. The experimental results demonstrated that the incubation time was reduced with increasing Ti content, and prolonged with the addition of Mo. After 30 % deformation at 850 ℃, the nucleation of strain-induced Ti(C,N) was a relatively slow process. On the other hand, the temperature where the nucleation rate of (Ti, Mo)C in ferrite was the highest descended first and then ascended with increasing Ti content, and so did the temperature where the incubation time was the shortest. The key point is that the tempera-ture of steel containing about 0.09 % Ti is the lowest. The mass fraction of MC-type particles with size smaller than 10 nm in steel containing 0.09% Ti and 0.2% Mo reached 73.7%. The size distributions of precipitates in steel containing 0.09% Ti were relatively concentrated compared with that in steel containing 0.07% Ti.
文摘In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy indicated the formation of (Fe, Ni, Mn)17Y2 precipitates with hexagonal structure in a Fe-10Ni-7Mn-0.8Y (wt.%) alloy. Lattice parameters of these precipitates were calculated as follows:a=0.8485 nm and c=0.8274 nm. Formation of Y2O3 sub-micron particles was also confirmed in both yttrium bearing steels via electrolytic phase extraction method. The effect of these precipitates on the prior austenite grain size was investigated. The results revealed that these precipitates had an effective role in controlling the prior austenite grain size.
文摘Several alloying elements involving Zr, Cu, Zn and Sc were added to Al-Mg sheet alloys in order to obtain an excellent combination of high strength and good high-temperature formability. Microstruc-tural examination showed that coarse intermetallic particles were formed in the microstructure and their amounts changed with variations of the alloying elements. During warm rolling of thermome-chanical treatments prior to warm deformation, the coarse particles initiated cracks, decreasing the warm formability. For healing the crack damage and further improving the warm formability, a process of hot isothermal press was developed and optimized to the sheet alloys. With this process, the biaxial stretch formability at 350℃ was improved by 22% for an aluminum alloy containing a large amount of coarse particles.
基金supported by the National Natural Science Foundation of China(U1302272)
文摘Phase field models were established to simulate the grain growth of a nanostructured AZ31 magnesium alloy,which contain spherical particles of differing sizes and volume fractions, under realistic spatial and temporal scales.The effect of the second phase particles on the nanostructure evolution was studied. The simulated results were compared with those of the conventional microstructured alloy.The expression of the local free energy density was improved by adding a second phase particle term. The right input parameters were selected for proper physical meaning. It was shown that the rules that govern the pinning effect of the second phase particles during the grain growth were different for the nanostructure and microstructure. There was a critical particle size value that affected the grain growth within the nanostructure. If the particle size was lower than the critical value, the pinning effect on grain growth increased with decreasing particle size. When the particle size was greater than the critical value, the particles had almost no pinning effect.However, in the conventional microstructured material,the larger particle size resulted in an enhanced pinning effect during grain growth for particle sizes smaller than 1 μm. The effect was reversed when the particle size was larger than the critical value. For the nanostructure, the critical value was200 nm when the particle content was 10 v.%, and the critical value decreased when the content increased. When the particle size was 30 nm, the particle pinning effect on the grain growth increased for increasing particle content.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the New Brunswick Innovation Foundation (NBIF)the Auto 21 Network of Centers of Excellence
文摘Void nucleation within measured particle fields of an aluminum alloy is investigated to develop a continuum nucleation model which reflects nucleation at the individual particle scale. A nucleation model for heterogeneous particle distributions is synchronized with the continuum model of Chu and Needleman using the average nucleation strain. The parameters in the continuum model are identified from the particle fields and are evaluated over the range of stress states observed in sheet metal forming. The synchronized continuum nucleation model achieves very good agreement with the nucleation trends for three measured particle fields in uniaxial tension, plane strain, and equal-biaxial tension.
文摘滚动摩擦沉积增材(Additive Friction Rolling Deposition,AFRD)是一种新兴的金属固态增材制造技术,特别适用于基于熔合增材制造方法易产生凝固缺陷的高强度铝合金。采用AFRD方法进行2024-O铝合金增材,获得全致密无缺陷的四层增材试件,利用金相显微镜、扫描电子显微镜对不同旋转速度增材试件宏观形貌、微观组织进行了表征。结果表明:(1)沉积层组织致密,无夹杂、裂纹等缺陷、相邻两沉积层之间形成良好的冶金结合。(2)沉积层呈现细小的轴晶粒组织,随着旋转速度升高,晶粒尺寸呈下降趋势。(3)沉积层第二相粒子呈现点片状分布于Al基体上,随着转速增大,第二相粒子趋向于细化与均匀。