This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which...This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.展开更多
The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protoc...The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.展开更多
Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or...Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.展开更多
文中研究了一类存在匹配和非匹配不确定性的轮式移动机器人(Wheeled Mobile Robot,WMR)的轨迹跟踪控制问题。提出了WMR的动力学模型,并将该模型转换为状态空间方程形式。通过改进超扭曲算法结合Lypunov稳定性理论,设计出系统的2阶滑模...文中研究了一类存在匹配和非匹配不确定性的轮式移动机器人(Wheeled Mobile Robot,WMR)的轨迹跟踪控制问题。提出了WMR的动力学模型,并将该模型转换为状态空间方程形式。通过改进超扭曲算法结合Lypunov稳定性理论,设计出系统的2阶滑模控制器。该控制器不仅可以使滑动变量快速收敛到零,而且使系统状态具有良好的跟踪效果。通过一个数值算例验证了所提出理论的有效性,确保了系统的跟踪性能。展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,and 61403168)
文摘This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60874053 and 61034006)
文摘The bounded consensus tracking problems of second-order multi-agent systems under directed networks with sam- pling delay are addressed in this paper. When the sampling delay is more than a sampling period, new protocols based on sampled-data control are proposed so that each agent can track the time-varying reference state of the virtual leader. By using the delay decomposition approach, the augmented matrix method, and the frequency domain analysis, necessary and sufficient conditions are obtained, which guarantee that the bounded consensus tracking is realized. Furthermore, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
文摘Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.
文摘文中研究了一类存在匹配和非匹配不确定性的轮式移动机器人(Wheeled Mobile Robot,WMR)的轨迹跟踪控制问题。提出了WMR的动力学模型,并将该模型转换为状态空间方程形式。通过改进超扭曲算法结合Lypunov稳定性理论,设计出系统的2阶滑模控制器。该控制器不仅可以使滑动变量快速收敛到零,而且使系统状态具有良好的跟踪效果。通过一个数值算例验证了所提出理论的有效性,确保了系统的跟踪性能。
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.