Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is mon...Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is monthly data on SHC importation from 1st January, 2014 to 31st December, 2016. Data was analyzed using Exponential Smoothing (ES) and Autoregressive Integrated Moving Average (ARIMA) models. The results showed that ARIMA (2, 1, 2) was the best fit for the SHC importation since its errors were smaller than those of the SES, DES and TES. The four error measures used were Root-mean-square error (RMSE), Mean absolute error (MAE), Mean percentage error (MPE) and Mean absolute percentage error (MAPE). The forecasts were also produced using the ARIMA (2, 1, 2) model for the next 18 months from January 2017. Although there is percentage increase of 90.6% from November 2015 to December 2016, the SHC importation generally is on the decrease in Zambia with percentage change of 59.5% from January 2014 to December 2016. The forecasts also show a gradual percentage decrease of 1.12% by June 2018. These results are more useful to policy and decision makers of Government departments such as Zambia Revenue Authority (ZRA) and Road Development Agency (RDA) in a bid to plan and execute their duties effectively.展开更多
目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串...目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串联质谱法和免疫印迹法3种方法对Cari1进行鉴定,并通过圆二色谱仪与紫外分光光度计表征其二、三级结构。结果本方法纯化获得碧根果致敏原Cari1,单轮制备量可达5 mg以上,且纯度大于95%,蛋白质高级结构未被破坏,能够被全部3名碧根果过敏患者的血清准确识别。结论该纯化方法技术路线简单、设备要求低且单次制备量高,总得率可达65%,操作便捷,为碧根果致敏原Car i 1的相关研究奠定了物质基础。展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the...Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.展开更多
文摘Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is monthly data on SHC importation from 1st January, 2014 to 31st December, 2016. Data was analyzed using Exponential Smoothing (ES) and Autoregressive Integrated Moving Average (ARIMA) models. The results showed that ARIMA (2, 1, 2) was the best fit for the SHC importation since its errors were smaller than those of the SES, DES and TES. The four error measures used were Root-mean-square error (RMSE), Mean absolute error (MAE), Mean percentage error (MPE) and Mean absolute percentage error (MAPE). The forecasts were also produced using the ARIMA (2, 1, 2) model for the next 18 months from January 2017. Although there is percentage increase of 90.6% from November 2015 to December 2016, the SHC importation generally is on the decrease in Zambia with percentage change of 59.5% from January 2014 to December 2016. The forecasts also show a gradual percentage decrease of 1.12% by June 2018. These results are more useful to policy and decision makers of Government departments such as Zambia Revenue Authority (ZRA) and Road Development Agency (RDA) in a bid to plan and execute their duties effectively.
文摘目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串联质谱法和免疫印迹法3种方法对Cari1进行鉴定,并通过圆二色谱仪与紫外分光光度计表征其二、三级结构。结果本方法纯化获得碧根果致敏原Cari1,单轮制备量可达5 mg以上,且纯度大于95%,蛋白质高级结构未被破坏,能够被全部3名碧根果过敏患者的血清准确识别。结论该纯化方法技术路线简单、设备要求低且单次制备量高,总得率可达65%,操作便捷,为碧根果致敏原Car i 1的相关研究奠定了物质基础。
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
文摘目的 探讨CAR-T细胞疗法治疗老年急性B淋巴细胞白血病(B-ALL)患者的安全性和有效性。方法 回顾性分析2020年5月—2022年12月苏州大学附属第一医院收治的接受CAR-T治疗的21例老年急性B淋巴细胞白血病患者的临床及随访资料,探讨CAR-T的有效性及安全性。结果 21例老年B-ALL患者CAR-T治疗后细胞因子释放综合征(cytokine release syndrome,CRS),中性粒细胞减少症和中性粒细胞缺乏症发生率分别为:38.1%(8/21),42.9%(9/21)和28.6%(6/21);与CAR-T回输前相比,CAR-T后一周白细胞绝对计数无显著差异,一个月后显著升高(P<0.001),中性粒细胞计数在CAR-T后一周和一个月均无显著差异(P>0.05),C反应蛋白在CAR-T后7天显著升高,30天后显著降低(-3 d vs 7 d,P=0.007;30 d vs 7 d,P=0.000 6);首次输注CAR-T后完全缓解率(complete remission,CR)为85.7%(18/21),中位随访时间为17个月;CAR-T后无进展生存率(progression-free survival,PFS)为81.0%,与性别、CAR-T细胞类型、费城染色体、高肿瘤负荷、桥接造血干细胞移植(HSCT)、治疗次数、LDH值以及血小板计数均无相关性(P>0.05),中位PFS为13个月;R/R B-ALL患者CAR-T治疗后CR率为75%(6/8),PFS率为67.5%,中位PFS时间为12个月;回输CAR-T后复发时间平均为10.2个月。结论 CAR-T细胞疗法用于治疗老年B-ALL患者具有较好的缓解率,为预后差的老年B-ALL患者提供有潜能的治疗手段。
基金the CRRC Zhuzhou Locomotive Co.,Ltd.and Shanghai Railway Certification(Group)Co.,Ltd.This research was funded by the Major Research Project of CRRC(No.2022CYY007 and No.2020CCA094).
文摘Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.