Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19...Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.展开更多
This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more ...This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par...This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met...This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.展开更多
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ...This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).展开更多
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using...A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.展开更多
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b...A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate...Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate the needs and desires of a large group of customers over varied utilities.The volume and volatility of the business makes it one of the prospectivefields for analytical study and data modeling.This is also why customer segmentation drives a key role in multiple retail business decisions such as marketing budgeting,customer targeting,customized offers,value proposition etc.The segmentation could be on various aspects such as demographics,historic behavior or preferences based on the use cases.In this paper,historic retail transactional data is used to segment the custo-mers using K-Means clustering and the results are utilized to arrive at a transition matrix which is used to predict the cluster movements over the time period using Markov Model algorithm.This helps in calculating the futuristic value a segment or a customer brings to the business.Strategic marketing designs and budgeting can be implemented using these results.The study is specifically useful for large scale marketing in domains such as e-commerce,insurance or retailers to segment,profile and measure the customer lifecycle value over a short period of time.展开更多
Modeling urban land-use dynamics is critical for urban experts’and infrastructure managers’planning.This study attempts to explore the land-use/land-cover(LULC)dynamics of Gondar using satellite images from 1984 to ...Modeling urban land-use dynamics is critical for urban experts’and infrastructure managers’planning.This study attempts to explore the land-use/land-cover(LULC)dynamics of Gondar using satellite images from 1984 to 2020.Markov-Chain and Cellular Automata(MC-CA)models have been recognized as performing well in predicting urban land-use change.However,only a few models work in Ethiopia in general,and no study in Gondar has applied this approach to study urban land-use patterns.Therefore,Gondar land-use/land cover changes of Gondar were predicted using the MC-CA model in IDRISI.The built-up area in Gondar city covered 1413 ha(3%of the total area)in 1984 and increased to 2380 ha(5%)in 1994;21153 ha(45.5%)in 2004;22622 ha(48.7%)in 2014;and 23427 ha(50.5%)in 2020.The area has been predicted to reach 57.5%in the 2050s,showing a faster increase that will cause a very vast loss of farmland.This will increase urban sprawl challenges as well as overall environmental disequilibrium in the preceding decade.Thus,innovative and careful structures and systems in urban planning are required to secure a sustainable urban future and to make our cities livable and competitive in the paradigm of sustainable cities.展开更多
In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the...In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.展开更多
文摘Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.
文摘This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.
文摘This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).
基金The project sponsored by the Foundation for Doctorate Thesis of Tsinghua Universitythe National Key Project in 1999-2004 sponsored by the Ministry of Science and Technology of China
文摘A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.
基金Supported by the Special Funds for Major State Basic Research Projects, PRC(G1999-0222-08) and the National Natural Science Foundation of China(No. 19872039).
文摘A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
文摘Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate the needs and desires of a large group of customers over varied utilities.The volume and volatility of the business makes it one of the prospectivefields for analytical study and data modeling.This is also why customer segmentation drives a key role in multiple retail business decisions such as marketing budgeting,customer targeting,customized offers,value proposition etc.The segmentation could be on various aspects such as demographics,historic behavior or preferences based on the use cases.In this paper,historic retail transactional data is used to segment the custo-mers using K-Means clustering and the results are utilized to arrive at a transition matrix which is used to predict the cluster movements over the time period using Markov Model algorithm.This helps in calculating the futuristic value a segment or a customer brings to the business.Strategic marketing designs and budgeting can be implemented using these results.The study is specifically useful for large scale marketing in domains such as e-commerce,insurance or retailers to segment,profile and measure the customer lifecycle value over a short period of time.
文摘Modeling urban land-use dynamics is critical for urban experts’and infrastructure managers’planning.This study attempts to explore the land-use/land-cover(LULC)dynamics of Gondar using satellite images from 1984 to 2020.Markov-Chain and Cellular Automata(MC-CA)models have been recognized as performing well in predicting urban land-use change.However,only a few models work in Ethiopia in general,and no study in Gondar has applied this approach to study urban land-use patterns.Therefore,Gondar land-use/land cover changes of Gondar were predicted using the MC-CA model in IDRISI.The built-up area in Gondar city covered 1413 ha(3%of the total area)in 1984 and increased to 2380 ha(5%)in 1994;21153 ha(45.5%)in 2004;22622 ha(48.7%)in 2014;and 23427 ha(50.5%)in 2020.The area has been predicted to reach 57.5%in the 2050s,showing a faster increase that will cause a very vast loss of farmland.This will increase urban sprawl challenges as well as overall environmental disequilibrium in the preceding decade.Thus,innovative and careful structures and systems in urban planning are required to secure a sustainable urban future and to make our cities livable and competitive in the paradigm of sustainable cities.
基金This work was supported by the National Natural Science Foundation of China(62122063,62073268,U22B2036,11931015)the Young Star of Science and Technology in Shaanxi Province(2020KJXX-078)+1 种基金the National Science Fund for Distinguished Young Scholars(62025602)the XPLORER PRIZE。
文摘In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.