In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporat...A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.展开更多
Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion...Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.展开更多
There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME a...There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for unde...In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for underdetermined blind separation of sparse sources with unknown number of sources in the presence of noise. It uses the robust competitive agglomeration (RCA) algorithm to estimate the source number and the mixing matrix, and the source signals then are recovered by using the interior point linear programming. Simulation results show good performance of the proposed algorithm for underdetermined blind sources separation (UBSS).展开更多
A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices i...A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.展开更多
Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation...Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.展开更多
The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of...The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of the number of sources.The method remedies the insufficiency of the Degenerate Unmixing Estimation Technique(DUET) which assumes the number of sources a priori.In the proposed algorithm,the Short-Time Fourier Transform(STFT) is used to obtain the sparse rep-resentations,a clustering method called Unsupervised Robust C-Prototypes(URCP) which can ac-curately identify multiple clusters regardless of the number of them is adopted to replace the histo-gram-based technique in DUET,and the binary time-frequency masks are constructed to separate the mixtures.Experimental results indicate that the proposed method results in a substantial increase in the average Signal-to-Interference Ratio(SIR),and maintains good speech quality in the separation results.展开更多
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.
基金Project supported by the National Natural Science Foundation of China(Grant No.60872123)the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province,China(Grant No.U0835001)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.2012ZM0025)the South China University of Technology,China,and the Fund for Higher-Level Talents in Guangdong Province,China(Grant No.N9101070)
文摘A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.
文摘Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.
文摘There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
基金the Research Foundation for Doctoral Programs of Higher Education of China (Grant No.20060280003)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for underdetermined blind separation of sparse sources with unknown number of sources in the presence of noise. It uses the robust competitive agglomeration (RCA) algorithm to estimate the source number and the mixing matrix, and the source signals then are recovered by using the interior point linear programming. Simulation results show good performance of the proposed algorithm for underdetermined blind sources separation (UBSS).
文摘A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.
文摘Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.
文摘The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of the number of sources.The method remedies the insufficiency of the Degenerate Unmixing Estimation Technique(DUET) which assumes the number of sources a priori.In the proposed algorithm,the Short-Time Fourier Transform(STFT) is used to obtain the sparse rep-resentations,a clustering method called Unsupervised Robust C-Prototypes(URCP) which can ac-curately identify multiple clusters regardless of the number of them is adopted to replace the histo-gram-based technique in DUET,and the binary time-frequency masks are constructed to separate the mixtures.Experimental results indicate that the proposed method results in a substantial increase in the average Signal-to-Interference Ratio(SIR),and maintains good speech quality in the separation results.