To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to co...This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.展开更多
Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the n...Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the number of vulnerabilities in combination with security risk management entropy. However, vulnerabilities can be either local or non-local, where the former is confined to networked elements and the latter results from interactions between elements. Furthermore, interactions involve multiple methods of communication, where each method can contain vulnerabilities specific to that method. Importantly, the number of possible interactions scales quadratically with the number of elements in standard network topologies. Minimizing these interactions can significantly reduce the number of vulnerabilities and the accompanying complexity. Two network configurations that yield sub-quadratic and linear scaling relations are presented.展开更多
Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over...Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.展开更多
Task-based Language Teaching(TBLT)research has provided ample evidence that cognitive complexity is an important aspect of task design that influences learner’s performance in terms of fluency,accuracy,and syntactic ...Task-based Language Teaching(TBLT)research has provided ample evidence that cognitive complexity is an important aspect of task design that influences learner’s performance in terms of fluency,accuracy,and syntactic complexity.Despite the substantial number of empirical investigations into task complexity in journal articles,storyline complexity,one of the features of it,is scarcely investigated.Previous research mainly focused on the impact of storyline complexity on learners’oral performance,but the impact on learners’written performance is less investigated.Thus,this study aims at investigating the effects of narrative complexity of storyline on senior high school students’written performance,as displayed by its complexity,fluency,and accuracy.The present study has important pedagogical implications.That is,task design and assessment should make a distinction between different types of narrative tasks.For example,the task with single or dual storyline.Results on task complexity may contribute to informing the pedagogical choices made by teachers when prioritizing work with a specific linguistic dimension.展开更多
Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide ...Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity and use the knowledge to fight against cancer.展开更多
The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are ca...The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios.展开更多
The rhetorical structure of abstracts has been a widely discussed topic, as it can greatly enhance the abstract writing skills of second-language writers. This study aims to provide guidance on the syntactic features ...The rhetorical structure of abstracts has been a widely discussed topic, as it can greatly enhance the abstract writing skills of second-language writers. This study aims to provide guidance on the syntactic features that L2 learners can employ, as well as suggest which features they should focus on in English academic writing. To achieve this, all samples were analyzed for rhetorical moves using Hyland’s five-rhetorical move model. Additionally, all sentences were evaluated for syntactic complexity, considering measures such as global, clausal and phrasal complexity. The findings reveal that expert writers exhibit a more balanced use of syntactic complexity across moves, effectively fulfilling the rhetorical objectives of abstracts. On the other hand, MA students tend to rely excessively on embedded structures and dependent clauses in an attempt to increase complexity. The implications of these findings for academic writing research, pedagogy, and assessment are thoroughly discussed.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
This study examines the role of the syntactic complexity of the text in the reading comprehension skills of students.Utilizing the qualitative method of research,this paper used structured interview questions as the m...This study examines the role of the syntactic complexity of the text in the reading comprehension skills of students.Utilizing the qualitative method of research,this paper used structured interview questions as the main data-gathering instruments.English language teachers from Coral na Munti National High School were selected as the respondents of the study.Finding of the study suggests that the syntactic complexity of the text affects the reading comprehension of the students.Students found it challenging to understand the message that the author conveyed if he or she used a large number of phrases and clauses in one sentence.Furthermore,the complex sentence syntactic structure was deemed the most challenging for students to understand.To overcome said challenges in comprehending text,various reading intervention programs were utilized by teachers.These interventions include focused or targeted instruction and the implementation of the Project Dear,suggested by the Department of Education.These programs were proven to help students improve their comprehension as well as their knowledge in syntactical structure of sentences.This study underscores the importance of selecting appropriate reading materials and implementing suitable reading intervention programs to enhance students’comprehension skills.展开更多
The cubic regularization(CR)algorithm has attracted a lot of attentions in the literature in recent years.We propose a new reformulation of the cubic regularization subproblem.The reformulation is an unconstrained con...The cubic regularization(CR)algorithm has attracted a lot of attentions in the literature in recent years.We propose a new reformulation of the cubic regularization subproblem.The reformulation is an unconstrained convex problem that requires computing the minimum eigenvalue of the Hessian.Then,based on this reformulation,we derive a variant of the(non-adaptive)CR provided a known Lipschitz constant for the Hessian and a variant of adaptive regularization with cubics(ARC).We show that the iteration complexity of our variants matches the best-known bounds for unconstrained minimization algorithms using first-and second-order information.Moreover,we show that the operation complexity of both of our variants also matches the state-of-the-art bounds in the literature.Numerical experiments on test problems from CUTEst collection show that the ARC based on our new subproblem reformulation is comparable to the existing algorithms.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular...This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.展开更多
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homo...Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homomorphism when G is given and H is a fixed tournament on three or fewer vertices. Each possible definition leads to a locally-injective oriented colouring problem. A dichotomy theorem is proved in each case.展开更多
This paper proposes the alternating direction method of multipliers-based infinity-norm(ADMIN) with threshold(ADMIN-T) and with percentage(ADMIN-P) detection algorithms,which make full use of the distribution of the s...This paper proposes the alternating direction method of multipliers-based infinity-norm(ADMIN) with threshold(ADMIN-T) and with percentage(ADMIN-P) detection algorithms,which make full use of the distribution of the signal to interference plus noise ratio(SINR) for an uplink massive MIMO system.The ADMIN-T and ADMIN-P detection algorithms are improved visions of the ADMIN detection algorithm,in which an appropriate SINR threshold in the ADMIN-T detection algorithm and a certain percentage in the ADMIN-P detection algorithm are designed to reduce the overall computational complexity.The detected symbols are divided into two parts by the SINR threshold which is based on the cumulative probability density function(CDF) of SINR and a percentage,respectively.The symbols in higher SINR part are detected by MMSE.The interference of these symbols is then cancelled by successive interference cancellation(SIC).Afterwards the remaining symbols with low SINR are iteratively detected by ADMIN.The simulation results show that the ADMIIN-T and the ADMIN-P detection algorithms provide a significant performance gain compared with some recently proposed detection algorithms.In addition,the computational complexity of ADMIN-T and ADMIN-P are significantly reduced.Furthermore,in the case of same number of transceiver antennas,the proposed algorithms have a higher performance compared with the case of asymmetric transceiver antennas.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea...Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.展开更多
In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are usi...In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.展开更多
Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools i...Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools in the development and innovation studies of economic geography.Researchers have found that green technology and eco-innovation approaches should be used to decisively reduce the effects of carbon emissions on the environment.However,debates about the impact of economic complexity on environment remain unsettled since some emerging production technologies have far-reaching pollution effects.This study explored the impacts of economic complexity on environmental sustainability in Turkey using the novel Fourier-based approaches,namely:Fourier Augmented Dickey-Fuller(FADF)and Fourier Autoregressive-Distributed Lag(FARDL)models.The Fourier-based approaches indicated that all variables(economic complexity index(ECI),GDP,energy consumption,and CO_(2)emission(CO_(2)E))are cointegrated in the long run.Additionally,the FARDL model implied that(i)in the long run,the effect of ECI(as a proxy for economic complexity),GDP(as a proxy for economic growth),and energy consumption on CO_(2)E(as a proxy for environmental quality)are important;(ii)economic complexity decreases environmental degradation in Turkey;and(iii)economic growth and energy consumption negatively affect environmental quality.The results also showed that economic complexity could be used as a policy tool to tackle environmental degradation.The findings also revealed that the fossil fuelbased economy will continue to expand and undermine Turkey’s efforts to meet its net zero emission target by 2053.Therefore,policy-makers should take actions and establish diversified economic,environmental,and energy strategies.For policy insights,the Turkish governments can use the combination of tax exemptions and technical support systems to support knowledge creation and the diffusion of environmentally friendly technologies The governments can also impose strict environmental regulations on the knowledge development phases.展开更多
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
文摘This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.
文摘Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the number of vulnerabilities in combination with security risk management entropy. However, vulnerabilities can be either local or non-local, where the former is confined to networked elements and the latter results from interactions between elements. Furthermore, interactions involve multiple methods of communication, where each method can contain vulnerabilities specific to that method. Importantly, the number of possible interactions scales quadratically with the number of elements in standard network topologies. Minimizing these interactions can significantly reduce the number of vulnerabilities and the accompanying complexity. Two network configurations that yield sub-quadratic and linear scaling relations are presented.
基金supported by the Ministry of Science and High Education of Russia(Theme No.368121031700169-1 of ICMM UrB RAS).
文摘Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.
文摘Task-based Language Teaching(TBLT)research has provided ample evidence that cognitive complexity is an important aspect of task design that influences learner’s performance in terms of fluency,accuracy,and syntactic complexity.Despite the substantial number of empirical investigations into task complexity in journal articles,storyline complexity,one of the features of it,is scarcely investigated.Previous research mainly focused on the impact of storyline complexity on learners’oral performance,but the impact on learners’written performance is less investigated.Thus,this study aims at investigating the effects of narrative complexity of storyline on senior high school students’written performance,as displayed by its complexity,fluency,and accuracy.The present study has important pedagogical implications.That is,task design and assessment should make a distinction between different types of narrative tasks.For example,the task with single or dual storyline.Results on task complexity may contribute to informing the pedagogical choices made by teachers when prioritizing work with a specific linguistic dimension.
文摘Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity and use the knowledge to fight against cancer.
基金supported in part by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03174)the National Natural Science Foundation of China(No.92067103)+4 种基金the Key Research and Development Program of Shaanxi,China(No.2021ZDLGY06-02)the Natural Science Foundation of Shaanxi Province(No.2019ZDLGY12-02)the Shaanxi Innovation Team Project(No.2018TD-007)the Xi'an Science and technology Innovation Plan(No.201809168CX9JC10)the Fundamental Research Funds for the Central Universities(No.YJS2212)and National 111 Program of China B16037.
文摘The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios.
文摘The rhetorical structure of abstracts has been a widely discussed topic, as it can greatly enhance the abstract writing skills of second-language writers. This study aims to provide guidance on the syntactic features that L2 learners can employ, as well as suggest which features they should focus on in English academic writing. To achieve this, all samples were analyzed for rhetorical moves using Hyland’s five-rhetorical move model. Additionally, all sentences were evaluated for syntactic complexity, considering measures such as global, clausal and phrasal complexity. The findings reveal that expert writers exhibit a more balanced use of syntactic complexity across moves, effectively fulfilling the rhetorical objectives of abstracts. On the other hand, MA students tend to rely excessively on embedded structures and dependent clauses in an attempt to increase complexity. The implications of these findings for academic writing research, pedagogy, and assessment are thoroughly discussed.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘This study examines the role of the syntactic complexity of the text in the reading comprehension skills of students.Utilizing the qualitative method of research,this paper used structured interview questions as the main data-gathering instruments.English language teachers from Coral na Munti National High School were selected as the respondents of the study.Finding of the study suggests that the syntactic complexity of the text affects the reading comprehension of the students.Students found it challenging to understand the message that the author conveyed if he or she used a large number of phrases and clauses in one sentence.Furthermore,the complex sentence syntactic structure was deemed the most challenging for students to understand.To overcome said challenges in comprehending text,various reading intervention programs were utilized by teachers.These interventions include focused or targeted instruction and the implementation of the Project Dear,suggested by the Department of Education.These programs were proven to help students improve their comprehension as well as their knowledge in syntactical structure of sentences.This study underscores the importance of selecting appropriate reading materials and implementing suitable reading intervention programs to enhance students’comprehension skills.
基金supported in part by the National Natural Foundation of China(Nos.11801087 and 12171100).
文摘The cubic regularization(CR)algorithm has attracted a lot of attentions in the literature in recent years.We propose a new reformulation of the cubic regularization subproblem.The reformulation is an unconstrained convex problem that requires computing the minimum eigenvalue of the Hessian.Then,based on this reformulation,we derive a variant of the(non-adaptive)CR provided a known Lipschitz constant for the Hessian and a variant of adaptive regularization with cubics(ARC).We show that the iteration complexity of our variants matches the best-known bounds for unconstrained minimization algorithms using first-and second-order information.Moreover,we show that the operation complexity of both of our variants also matches the state-of-the-art bounds in the literature.Numerical experiments on test problems from CUTEst collection show that the ARC based on our new subproblem reformulation is comparable to the existing algorithms.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
文摘This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homomorphism when G is given and H is a fixed tournament on three or fewer vertices. Each possible definition leads to a locally-injective oriented colouring problem. A dichotomy theorem is proved in each case.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers 61671047,61775015 and U2006217.
文摘This paper proposes the alternating direction method of multipliers-based infinity-norm(ADMIN) with threshold(ADMIN-T) and with percentage(ADMIN-P) detection algorithms,which make full use of the distribution of the signal to interference plus noise ratio(SINR) for an uplink massive MIMO system.The ADMIN-T and ADMIN-P detection algorithms are improved visions of the ADMIN detection algorithm,in which an appropriate SINR threshold in the ADMIN-T detection algorithm and a certain percentage in the ADMIN-P detection algorithm are designed to reduce the overall computational complexity.The detected symbols are divided into two parts by the SINR threshold which is based on the cumulative probability density function(CDF) of SINR and a percentage,respectively.The symbols in higher SINR part are detected by MMSE.The interference of these symbols is then cancelled by successive interference cancellation(SIC).Afterwards the remaining symbols with low SINR are iteratively detected by ADMIN.The simulation results show that the ADMIIN-T and the ADMIN-P detection algorithms provide a significant performance gain compared with some recently proposed detection algorithms.In addition,the computational complexity of ADMIN-T and ADMIN-P are significantly reduced.Furthermore,in the case of same number of transceiver antennas,the proposed algorithms have a higher performance compared with the case of asymmetric transceiver antennas.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2022 Yeungnam University Research Grant.
文摘Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.
文摘In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.
文摘Globally,economies have become complex and new technologies have transformed and facilitated the modernization of economies.In the previous literature,economic complexity approach has become one of the popular tools in the development and innovation studies of economic geography.Researchers have found that green technology and eco-innovation approaches should be used to decisively reduce the effects of carbon emissions on the environment.However,debates about the impact of economic complexity on environment remain unsettled since some emerging production technologies have far-reaching pollution effects.This study explored the impacts of economic complexity on environmental sustainability in Turkey using the novel Fourier-based approaches,namely:Fourier Augmented Dickey-Fuller(FADF)and Fourier Autoregressive-Distributed Lag(FARDL)models.The Fourier-based approaches indicated that all variables(economic complexity index(ECI),GDP,energy consumption,and CO_(2)emission(CO_(2)E))are cointegrated in the long run.Additionally,the FARDL model implied that(i)in the long run,the effect of ECI(as a proxy for economic complexity),GDP(as a proxy for economic growth),and energy consumption on CO_(2)E(as a proxy for environmental quality)are important;(ii)economic complexity decreases environmental degradation in Turkey;and(iii)economic growth and energy consumption negatively affect environmental quality.The results also showed that economic complexity could be used as a policy tool to tackle environmental degradation.The findings also revealed that the fossil fuelbased economy will continue to expand and undermine Turkey’s efforts to meet its net zero emission target by 2053.Therefore,policy-makers should take actions and establish diversified economic,environmental,and energy strategies.For policy insights,the Turkish governments can use the combination of tax exemptions and technical support systems to support knowledge creation and the diffusion of environmentally friendly technologies The governments can also impose strict environmental regulations on the knowledge development phases.