In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
The second-order harmonic field characteristics at the solid-solid interface with P wave incidence were evaluated according to the second-order potential theory.An isotropic solid-solid interface was established to so...The second-order harmonic field characteristics at the solid-solid interface with P wave incidence were evaluated according to the second-order potential theory.An isotropic solid-solid interface was established to solve the boundary value problem of second-order nonhomogeneous potential equation based on the Lagrange’s method of variation parameters.A numerical computation was performed to analyze the incident angle and second-order harmonic displacement.The results show that the longitudinal wave and transverse wave displacements of second-order harmonic field rapidly increase at a specific incidence angle.Moreover,the special solutions of displacement abruptly change for incident angle θw.Finally,the effect of boundary surface on second-order harmonic sound field is also discussed.展开更多
By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By chan...By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.展开更多
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,...In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.展开更多
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an...The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.展开更多
Hydrogen-based compounds have attracted significant attention in recent years due to the discovery of conventional superconductivity with high critical temperature under high pressure,rekindling hopes for finding room...Hydrogen-based compounds have attracted significant attention in recent years due to the discovery of conventional superconductivity with high critical temperature under high pressure,rekindling hopes for finding roomtemperature superconductors.In this study,we investigated the vibrational and superconducting properties of H_(3)Sein the Im ̄3m phase under pressures of 50-200GPa.Our approach combines the stochastic self-consistent harmonic approximation and first-principles calculations to account for the quantum and anharmonic effects of ions.According to the results,these effects significantly modify the crystal structure,increasing the inner pressure by approximately 8GPa compared to situations in which they are ignored.The phonon spectra suggest that when these effects are considered,the crystal stabilizes at pressures as low as approximately 61GPa,which is significantly lower than the previously predicted value of over 100GPa.Our calculations also highlight the critical role of quantum and anharmonic effects on the electron-phonon coupling properties.Neglecting these factors can result in a significant overestimation of the superconducting critical temperature(T_(c))by approximately 4K(200GPa)to 25K(125GPa).With anharmonic phonons,the T_(c) calculated from the Migdal-Eliashberg equations reaches 200K(μ⋆=0.1,λ=4.1)as the pressure decreases to 64GPa,indicating that the crystal is a rare high-Tc superconductor at moderate pressures.展开更多
In this paper,promising but simple schemes are investigated to enhance the micro-bunching of relativistic electron beams for coherent harmonic generation(CHG)by using phase merging effects.In contrast to the standard ...In this paper,promising but simple schemes are investigated to enhance the micro-bunching of relativistic electron beams for coherent harmonic generation(CHG)by using phase merging effects.In contrast to the standard CHG scheme,two specially designed dispersion sections(DSs)are adopted with the DS-modulator–DS configuration.The phase space of the e beam is appropriately coupled in the first DS,and the electrons within one seed wavelength can merge to the same phase with a matched second DS.Micro-bunching of the e beam can thus be enhanced by a large margin with much higher-harmonic components.Taking e beams from laser wakefield accelerators(LWFAs)as an example,start-to-end simulations are performed to show the effectiveness and robustness of the proposed schemes with several configurations.The beam current can be optimized to several tens to hundreds of kiloamperes,and the radiation power reaches hundreds of megawatts in the extreme ultraviolet regime within a 3.5 m-long beamline.The proposed schemes offer new opportunities for future compact free-electron lasers driven by LWFAs and provides prospects for truly compact and widely applicable systems.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappin...The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a famil...In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a family of hypersurfaces{Q_(j)}_(j=1)^(q)in P^(m-1)(C)located in the N-subgeneral position.In addition,we investigate the Gauss curvature estimate for the K-quasiconformal harmonic surfaces immersed in R^(3)whose Gauss maps are ramified over a family of hypersurfaces located in the N-subgeneral position.展开更多
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spira...We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.展开更多
In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give ...In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.展开更多
In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as...In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as binomial coefficients are derived.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as m...In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.展开更多
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.
基金supported by the National Natural Science Foundation of China (11574072,11274091)the Key Research Project of Jiangsu Province (BE2016056)。
文摘The second-order harmonic field characteristics at the solid-solid interface with P wave incidence were evaluated according to the second-order potential theory.An isotropic solid-solid interface was established to solve the boundary value problem of second-order nonhomogeneous potential equation based on the Lagrange’s method of variation parameters.A numerical computation was performed to analyze the incident angle and second-order harmonic displacement.The results show that the longitudinal wave and transverse wave displacements of second-order harmonic field rapidly increase at a specific incidence angle.Moreover,the special solutions of displacement abruptly change for incident angle θw.Finally,the effect of boundary surface on second-order harmonic sound field is also discussed.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.Y23A040001 and LY21F050001)the National Key Research and Development Program of China(Grant No.2019YFA0307700),the National Natural Science Foundation of China(Grant Nos.12074145,11774219,11975012,12374029,12304378,and 12204214)+2 种基金the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20220101003JC)the Foundation of Education Department of Liaoning Province,China(Grant No.LJKMZ20221435)the National College Students Innovation and Entrepreneurship Training Program(Grant No.202310350062).
文摘By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)。
文摘In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.
文摘The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.
基金Natural Science Foundation Project(Grant No.20230101280JC)of Jilin Provincial Department of Science and Technology.
文摘Hydrogen-based compounds have attracted significant attention in recent years due to the discovery of conventional superconductivity with high critical temperature under high pressure,rekindling hopes for finding roomtemperature superconductors.In this study,we investigated the vibrational and superconducting properties of H_(3)Sein the Im ̄3m phase under pressures of 50-200GPa.Our approach combines the stochastic self-consistent harmonic approximation and first-principles calculations to account for the quantum and anharmonic effects of ions.According to the results,these effects significantly modify the crystal structure,increasing the inner pressure by approximately 8GPa compared to situations in which they are ignored.The phonon spectra suggest that when these effects are considered,the crystal stabilizes at pressures as low as approximately 61GPa,which is significantly lower than the previously predicted value of over 100GPa.Our calculations also highlight the critical role of quantum and anharmonic effects on the electron-phonon coupling properties.Neglecting these factors can result in a significant overestimation of the superconducting critical temperature(T_(c))by approximately 4K(200GPa)to 25K(125GPa).With anharmonic phonons,the T_(c) calculated from the Migdal-Eliashberg equations reaches 200K(μ⋆=0.1,λ=4.1)as the pressure decreases to 64GPa,indicating that the crystal is a rare high-Tc superconductor at moderate pressures.
基金supported by the National Natural Science Foundation of China(Grant Nos.12388102,12225411,12105353,11991072,and 12174410)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR060)+1 种基金the Program of Shanghai Academic Research Leader(Grant No.22XD1424200)the State Key Laboratory Program of the Chinese Ministry of Science and Technology and CAS Youth Innovation Promotion Association(Y201952 and 2022242).
文摘In this paper,promising but simple schemes are investigated to enhance the micro-bunching of relativistic electron beams for coherent harmonic generation(CHG)by using phase merging effects.In contrast to the standard CHG scheme,two specially designed dispersion sections(DSs)are adopted with the DS-modulator–DS configuration.The phase space of the e beam is appropriately coupled in the first DS,and the electrons within one seed wavelength can merge to the same phase with a matched second DS.Micro-bunching of the e beam can thus be enhanced by a large margin with much higher-harmonic components.Taking e beams from laser wakefield accelerators(LWFAs)as an example,start-to-end simulations are performed to show the effectiveness and robustness of the proposed schemes with several configurations.The beam current can be optimized to several tens to hundreds of kiloamperes,and the radiation power reaches hundreds of megawatts in the extreme ultraviolet regime within a 3.5 m-long beamline.The proposed schemes offer new opportunities for future compact free-electron lasers driven by LWFAs and provides prospects for truly compact and widely applicable systems.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)supported by the Youth Innovation Foundation of Shenzhen Polytechnic University(6024310023K)。
文摘The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
基金supported by the NFSC(11971182,12271189)the NFS of Fujian Province of China(2019J01066,2021J01304)。
文摘In this paper,we study the value distribution properties of the generalized Gauss maps of weakly complete harmonic surfaces immersed in R^(m),which is the case where the generalized Gauss mapΦis ramified over a family of hypersurfaces{Q_(j)}_(j=1)^(q)in P^(m-1)(C)located in the N-subgeneral position.In addition,we investigate the Gauss curvature estimate for the K-quasiconformal harmonic surfaces immersed in R^(3)whose Gauss maps are ramified over a family of hypersurfaces located in the N-subgeneral position.
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029)。
文摘We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
文摘In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.
基金Supported by Zhoukou Normal University High-Level Talents Start-Up Funds Research Project(Grant No.ZKNUC2022007)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX240725).
文摘In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as binomial coefficients are derived.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974137,92250306,and 12304302)the National Key Program for Science and Technology Research and Development(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of Jilin Provincial Education Department,China(Grant No.JJKH20230283KJ)。
文摘In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.