This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester ma...This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for ...The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.展开更多
In this paper,we study a second-order accurate and linear numerical scheme for the nonlocal CahnHilliard equation.The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth ...In this paper,we study a second-order accurate and linear numerical scheme for the nonlocal CahnHilliard equation.The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth extrapolation for the temporal discretization,and by applying the Fourier spectral collocation to the spatial discretization.In addition,two stabilization terms in different forms are added for the sake of the numerical stability.We conduct a complete convergence analysis by using the higher-order consistency estimate for the numerical scheme,combined with the rough error estimate and the refined estimate.By regarding the numerical solution as a small perturbation of the exact solution,we are able to justify the discrete?^(∞)bound of the numerical solution,as a result of the rough error estimate.Subsequently,the refined error estimate is derived to obtain the optimal rate of convergence,following the established?∞bound of the numerical solution.Moreover,the energy stability is also rigorously proved with respect to a modified energy.The proposed scheme can be viewed as the generalization of the second-order scheme presented in an earlier work,and the energy stability estimate has greatly improved the corresponding result therein.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are usi...In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.展开更多
This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original syste...This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique.展开更多
In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametri...In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the le...In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ...In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.展开更多
In this paper. we are concerned with the stability and control problem for aclass of second-order linear systems in Banach space. First. a criterion for the exponentialstability of a first-order linear system is prese...In this paper. we are concerned with the stability and control problem for aclass of second-order linear systems in Banach space. First. a criterion for the exponentialstability of a first-order linear system is presented. Then. the exponential stability as wellas some properties of a class of second-order linear systems is proved. At last. the feedbackcontrol of this class of systems is investigated.展开更多
The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solut...The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solutions, the existence of the periodic solutions, the existence and uniqueness of the stationary oscillation are obtained by means of the Liapunov's second method, The conclusion in the literatures are generalized.展开更多
The title compound [HphenNO2]+NO3- has been prepared and characterized by elemental analysis, electronic absorption spectroscopy, TG/DTA, IR, 1H and 13C NMR spectro- scopy. Single-crystal X-ray structure determination...The title compound [HphenNO2]+NO3- has been prepared and characterized by elemental analysis, electronic absorption spectroscopy, TG/DTA, IR, 1H and 13C NMR spectro- scopy. Single-crystal X-ray structure determination of the title compound was also carried out. It crystallizes in monoclinic, space group Cc with a = 13.861(3), b = 10.142(2), c = 8.7320(17) ? b = 103.70(3)? C12H8N4O5, Mr = 288.22, V = 1192.6(4) 3, Z = 4, Dc = 1.605 g/cm3 , F(000) = 592, (MoK) = 0.129 mm-1, R = 0.0439, wR = 0.1125 and GOF =1.114. In the crystal lattice, the molecules create a network structure through hydrogen bonds. The second order optical non- linearity was performed by quantum chemical method, showing the title compound has higher molecular hyper polarizability value (?= 24.66×10-30 esu).展开更多
文摘This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
文摘The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.
基金supported by the Chinese Academy of Sciences(CAS)Academy of Mathematics and Systems Science(AMSS)the Hong Kong Polytechnic University(PolyU)Joint Laboratory of Applied Mathematics+4 种基金supported by the Hong Kong Research Council General Research Fund(Grant No.15300821)the Hong Kong Polytechnic University Grants(Grant Nos.1-BD8N,4-ZZMK and 1-ZVWW)supported by the Hong Kong Research Council Research Fellow Scheme(Grant No.RFS2021-5S03)General Research Fund(Grant No.15302919)supported by US National Science Foundation(Grant No.DMS-2012269)。
文摘In this paper,we study a second-order accurate and linear numerical scheme for the nonlocal CahnHilliard equation.The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth extrapolation for the temporal discretization,and by applying the Fourier spectral collocation to the spatial discretization.In addition,two stabilization terms in different forms are added for the sake of the numerical stability.We conduct a complete convergence analysis by using the higher-order consistency estimate for the numerical scheme,combined with the rough error estimate and the refined estimate.By regarding the numerical solution as a small perturbation of the exact solution,we are able to justify the discrete?^(∞)bound of the numerical solution,as a result of the rough error estimate.Subsequently,the refined error estimate is derived to obtain the optimal rate of convergence,following the established?∞bound of the numerical solution.Moreover,the energy stability is also rigorously proved with respect to a modified energy.The proposed scheme can be viewed as the generalization of the second-order scheme presented in an earlier work,and the energy stability estimate has greatly improved the corresponding result therein.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.
基金supported by the National Nature Science Foundation of China (No. 60804032)the Central University Basic Research Foundation of South China University of Technology (No. 2009zm0178)the Small Project Funding of HKU from HKU SPACE Research Fund (No.201007176165)
文摘This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique.
文摘In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金supported by the National Natural Science Foundation of China(61203354)
文摘In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena.
文摘In this paper. we are concerned with the stability and control problem for aclass of second-order linear systems in Banach space. First. a criterion for the exponentialstability of a first-order linear system is presented. Then. the exponential stability as wellas some properties of a class of second-order linear systems is proved. At last. the feedbackcontrol of this class of systems is investigated.
文摘The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solutions, the existence of the periodic solutions, the existence and uniqueness of the stationary oscillation are obtained by means of the Liapunov's second method, The conclusion in the literatures are generalized.
文摘The title compound [HphenNO2]+NO3- has been prepared and characterized by elemental analysis, electronic absorption spectroscopy, TG/DTA, IR, 1H and 13C NMR spectro- scopy. Single-crystal X-ray structure determination of the title compound was also carried out. It crystallizes in monoclinic, space group Cc with a = 13.861(3), b = 10.142(2), c = 8.7320(17) ? b = 103.70(3)? C12H8N4O5, Mr = 288.22, V = 1192.6(4) 3, Z = 4, Dc = 1.605 g/cm3 , F(000) = 592, (MoK) = 0.129 mm-1, R = 0.0439, wR = 0.1125 and GOF =1.114. In the crystal lattice, the molecules create a network structure through hydrogen bonds. The second order optical non- linearity was performed by quantum chemical method, showing the title compound has higher molecular hyper polarizability value (?= 24.66×10-30 esu).