The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-...In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1...In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.展开更多
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In t...The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.展开更多
The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values o...The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.展开更多
An interesting semi-analytic solution is given for the Helmholtz equation. This solution is obtained from a rigorous discussion of the regularity and the inversion of the tridiagonal symmetric matrix. Then, applicatio...An interesting semi-analytic solution is given for the Helmholtz equation. This solution is obtained from a rigorous discussion of the regularity and the inversion of the tridiagonal symmetric matrix. Then, applications are given, showing very good accuracy. This work provides also the analytical inverse of the skew-symmetric tridiagonal matrix.展开更多
In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of s...In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of solving(I)is also given.As a particular case,we also give a simple method of finding a system of fundamental solutions of a homogeneous system of right linear equations over a skew field.展开更多
In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise e...In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.展开更多
This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.G...This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.展开更多
In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite ...In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.展开更多
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
文摘In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.
基金Supported in part by the Basic Science and the Front Technology Research Foundation of Henan Province of China under Grant No.092300410179the Doctoral Scientific Research Foundation of Henan University of Science and Technology under Grant No.09001204
文摘The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.
基金The project supported in part by the Natural Science Foundation of Education Department of Henan Province of China under Grant No. 2006110002 and the Science Foundations of Henan University of Science and Technology under Grant Nos. 2004ZD002 and 2006ZY001
文摘The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.
文摘An interesting semi-analytic solution is given for the Helmholtz equation. This solution is obtained from a rigorous discussion of the regularity and the inversion of the tridiagonal symmetric matrix. Then, applications are given, showing very good accuracy. This work provides also the analytical inverse of the skew-symmetric tridiagonal matrix.
文摘In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of solving(I)is also given.As a particular case,we also give a simple method of finding a system of fundamental solutions of a homogeneous system of right linear equations over a skew field.
文摘In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.
文摘This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.
文摘In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.