In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy sev...In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy several row rank preserving conditions,we derive a new perturbation bound of the projection.展开更多
It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obt...It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.展开更多
A general method based on Riccati transfer matrix is presented to calculate the 2nd order perturbations of eigendatas for one_dimensional structural system with parameter uncertainties. The method is applicable to bot...A general method based on Riccati transfer matrix is presented to calculate the 2nd order perturbations of eigendatas for one_dimensional structural system with parameter uncertainties. The method is applicable to both real and complex eigendatas of any one_dimensional structural system. The formulas for calculating the sensitivity derivatives of eigendatas based on this method are also presented. The method is applied to the perturbation analysis for the eigendatas of a rotor with gyroscopic moment, and the differences between the perturbation results and the accurate calculating results are small.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to s...When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to study the uncertainty. In this paper, the vibration problem of structure with interval parameters was studied, and the eigenvalue problem of the structures with interval parameters was transferred into two different eigenvalue problems. The perturbation method was applied to the vibration problem of the structures with interval parameters. The numerical results show that the proposed method is sufficiently accurate and needs less computational efforts.展开更多
The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for ...The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.展开更多
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr...The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
Based on the block style spectral decomposition,this paper deals with the optimal backward perturbation analysis for the linear system with block cyclic coefficient matrix.
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitio...In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.展开更多
In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transp...In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.展开更多
This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality ...This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.展开更多
Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
文摘In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy several row rank preserving conditions,we derive a new perturbation bound of the projection.
文摘It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.
文摘A general method based on Riccati transfer matrix is presented to calculate the 2nd order perturbations of eigendatas for one_dimensional structural system with parameter uncertainties. The method is applicable to both real and complex eigendatas of any one_dimensional structural system. The formulas for calculating the sensitivity derivatives of eigendatas based on this method are also presented. The method is applied to the perturbation analysis for the eigendatas of a rotor with gyroscopic moment, and the differences between the perturbation results and the accurate calculating results are small.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
文摘When the parameters of structures are uncertain, the structural natural frequencies become uncertain. The interval parameters description, i.e. the unknown-but bounded parameters description is one of the methods to study the uncertainty. In this paper, the vibration problem of structure with interval parameters was studied, and the eigenvalue problem of the structures with interval parameters was transferred into two different eigenvalue problems. The perturbation method was applied to the vibration problem of the structures with interval parameters. The numerical results show that the proposed method is sufficiently accurate and needs less computational efforts.
文摘The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.
文摘The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
基金This project is SUpported by Natioanl Science Foundation of China
文摘Based on the block style spectral decomposition,this paper deals with the optimal backward perturbation analysis for the linear system with block cyclic coefficient matrix.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.
基金supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Project No.CityU 102204).
文摘In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.
基金supported by Natural Science Foundation of Jiangsu Province of China(No.BK2007016)Scientific Research and Development Program of the Higher Education Institutions of Shandong Province of China(No.J09LG58)
文摘This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.
基金Supported by the National Natural Science Foundation of China(11071002)the Anhui Natural ScienceFoundation of China(11040606M14)NSF of Department of Education of Anhui Province(KJ2011A195)
文摘Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.