With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Ya...With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.展开更多
The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numer...The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numerically analyzed through the Reynolds averaged Navier-Stokes(RANS) equations.For modeling radiation and combustion,the discrete ordinates(DO) and eddy dissipation concept model have been applied.The Reynolds stress transport model(RSM) also was used for turbulence modeling.For THF in the energy equation,the GGDH model and high order algebraic model of HOGGDH with simple eddy diffusivity model have been applied.Comparing the numerical results of the SED model(with the turbulent Prandtl 0.85) and the second-order heat flux models with available experimental data follows that applying the second-order models significantly led to the modification of predicting temperature distribution and species mass fraction distribution in the combustion chamber.Calculation of turbulent Prandtl number in the combustion chamber shows that the assumption of Pr_(t) of 0.85 is far from reality and Pr_(t) in different areas varies from 0.4 to 1.2.展开更多
This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the vi...This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.展开更多
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par...This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.展开更多
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met...This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.展开更多
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ...This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).展开更多
In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which prov...In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using...A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.展开更多
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b...A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.展开更多
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale flu...A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
基金supported by the National Natural Science Foundation of China (10872192)
文摘With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.
文摘The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numerically analyzed through the Reynolds averaged Navier-Stokes(RANS) equations.For modeling radiation and combustion,the discrete ordinates(DO) and eddy dissipation concept model have been applied.The Reynolds stress transport model(RSM) also was used for turbulence modeling.For THF in the energy equation,the GGDH model and high order algebraic model of HOGGDH with simple eddy diffusivity model have been applied.Comparing the numerical results of the SED model(with the turbulent Prandtl 0.85) and the second-order heat flux models with available experimental data follows that applying the second-order models significantly led to the modification of predicting temperature distribution and species mass fraction distribution in the combustion chamber.Calculation of turbulent Prandtl number in the combustion chamber shows that the assumption of Pr_(t) of 0.85 is far from reality and Pr_(t) in different areas varies from 0.4 to 1.2.
基金supported by the NSFC(12201557)the Foundation of Zhejiang Provincial Education Department,China(Y202249921).
文摘This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses.
文摘This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses.
文摘This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis).
文摘In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金The project sponsored by the Foundation for Doctorate Thesis of Tsinghua Universitythe National Key Project in 1999-2004 sponsored by the Ministry of Science and Technology of China
文摘A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.
基金Supported by the Special Funds for Major State Basic Research Projects, PRC(G1999-0222-08) and the National Natural Science Foundation of China(No. 19872039).
文摘A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.
基金The project supported by the Special Funds for Major State Basic Research,China(G-1999-0222-08)the Postdoctoral Science Foundation(2004036239)
文摘A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).