In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po...The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
This paper discusses a class of forced second-order half-linear differential equations. By using the generalized Riccati technique and the averaging technique, some new interval oscillation criteria are obtained.
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
The purpose of this paper is to study the oscillation of second-order half-linear neutral differential equations with advanced argument of the form(r(t)((y(t)+p(t)y(τ(t)))')^(α))'+q(t)yα(σ(t))=0,t≥t_(0),w...The purpose of this paper is to study the oscillation of second-order half-linear neutral differential equations with advanced argument of the form(r(t)((y(t)+p(t)y(τ(t)))')^(α))'+q(t)yα(σ(t))=0,t≥t_(0),when∫^(∞)r^(−1/α)(s)ds<∞.We obtain sufficient conditions for the oscillation of the studied equations by the inequality principle and the Riccati transformation.An example is provided to illustrate the results.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a pol...In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.展开更多
In this paper, we consider the following second order retarded differential equations x″(t)+cx′(t)=qx(t-σ)-lx(t-δ) (1) x″(t)+p(t)x(t-τ)=0 (2) We give some sufficient conditions for the oscillation of all solutio...In this paper, we consider the following second order retarded differential equations x″(t)+cx′(t)=qx(t-σ)-lx(t-δ) (1) x″(t)+p(t)x(t-τ)=0 (2) We give some sufficient conditions for the oscillation of all solutions of Eq. (1) in the case where q, ι, σ, δ are positive numbers and c is a real number. And also, we study the asymptotic behavior of the nonoscillatory solutions. If necessary, we give some examples to illustrate our results. At last, we study Eq. (2) with some conditions on p(t).展开更多
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an...This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorith...An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorithm is developed to implement this method.Numerical results show the efficiency of this new approach.展开更多
This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-...This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-differential term of a state with a weakly singular kernel, a state, integral term of a state with a smooth kernel, and force. The original class of weakly singular integro-differential equations of the first kind is derived from aeroelasticity mathematical models. Among the proposed methods, the method for solving linear cases is fully based on previously reported approximation scheme for equations of the first kind. For nonlinear cases, a revised method is proposed. Examples are presented to demonstrate the effectiveness of the proposed methods, and the results indicate that the proposed methods facilitate achieving satisfactory and accurate approximations.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cyli...In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cylinder inequalities for the singular parabolic equation Эtu-div(A∨u) + Vu = 0, where the singular potential V belonging to the Kato-Fefferman- Phong's class. Some applications are also discussed.展开更多
Results on the existence of piecewise continuous solutions for two classes of initial value problems of impulsive singular fractional differential equations are obtained.
A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower sol...A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower solution, sufficient conditions for the existence of the problems' solution are established. A uniformly valid asymptotic expansions of the solution is also given.展开更多
This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive ...This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]展开更多
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金supported by the National Board for Higher Mathematics,Mumbai,India under Grant No.2/48(5)/2013/NBHM(R.P.)/RD-II/688 dt 16.01.2014
文摘The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘This paper discusses a class of forced second-order half-linear differential equations. By using the generalized Riccati technique and the averaging technique, some new interval oscillation criteria are obtained.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
基金This research is supported by the Shandong Provincial Natural Science Foundation of China(ZR2017MA043).
文摘The purpose of this paper is to study the oscillation of second-order half-linear neutral differential equations with advanced argument of the form(r(t)((y(t)+p(t)y(τ(t)))')^(α))'+q(t)yα(σ(t))=0,t≥t_(0),when∫^(∞)r^(−1/α)(s)ds<∞.We obtain sufficient conditions for the oscillation of the studied equations by the inequality principle and the Riccati transformation.An example is provided to illustrate the results.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
文摘In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.
文摘In this paper, we consider the following second order retarded differential equations x″(t)+cx′(t)=qx(t-σ)-lx(t-δ) (1) x″(t)+p(t)x(t-τ)=0 (2) We give some sufficient conditions for the oscillation of all solutions of Eq. (1) in the case where q, ι, σ, δ are positive numbers and c is a real number. And also, we study the asymptotic behavior of the nonoscillatory solutions. If necessary, we give some examples to illustrate our results. At last, we study Eq. (2) with some conditions on p(t).
文摘This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金The work of this author is supported by The Foundation of CAEP 20030658)The work of this author is partially supported by The Shanghai Natural Science Foundation N.00JC14057+1 种基金The Shanghai Natural Science Foundation for Youth N. 01QN85.The work of thi
文摘An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorithm is developed to implement this method.Numerical results show the efficiency of this new approach.
文摘This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-differential term of a state with a weakly singular kernel, a state, integral term of a state with a smooth kernel, and force. The original class of weakly singular integro-differential equations of the first kind is derived from aeroelasticity mathematical models. Among the proposed methods, the method for solving linear cases is fully based on previously reported approximation scheme for equations of the first kind. For nonlinear cases, a revised method is proposed. Examples are presented to demonstrate the effectiveness of the proposed methods, and the results indicate that the proposed methods facilitate achieving satisfactory and accurate approximations.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金supported in part by the NNSF of China (10471069, 10771110)by NSF of Ningbo City (2009A610084)
文摘In this article, we give the three-sphere inequalities and three-ball inequalities for the singular elliptic equation div(A∨u) - Vu =0, and the three-ball inequalities on the characteristic plane and the three-cylinder inequalities for the singular parabolic equation Эtu-div(A∨u) + Vu = 0, where the singular potential V belonging to the Kato-Fefferman- Phong's class. Some applications are also discussed.
基金Supported by the Natural Science Foundation of Guangdong Province (S2011010001900)the Guangdong Higher Education Foundation for High-Level Talents
文摘Results on the existence of piecewise continuous solutions for two classes of initial value problems of impulsive singular fractional differential equations are obtained.
文摘A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower solution, sufficient conditions for the existence of the problems' solution are established. A uniformly valid asymptotic expansions of the solution is also given.
文摘This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]