Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethyle...Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.展开更多
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break...The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.展开更多
Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical...Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.展开更多
Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secon...Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.展开更多
Nowadays solid-state batteries have become a hot spot in the research of batteries and a significant candidate for commercial batteries for the increasing demands for good safety and excellent energy density.Metal-org...Nowadays solid-state batteries have become a hot spot in the research of batteries and a significant candidate for commercial batteries for the increasing demands for good safety and excellent energy density.Metal-organic frameworks(MOFs)have been considered as suitable materials for solid-state electrolytes(SSEs)for the merits of regular channels and large specific surface areas,which can provide a promising structural platform for fast-ion conduction.Therefore,numerous kinds of MOF-based SSEs with enhanced electrochemical performance have been successfully synthesized and studied in recent years.In this review,the recent progress(synthesis methods,physical and chemical characteristics)of MOF-based SSEs for secondary batteries have been summarized.Finally,the challenges and opportunities faced by the future development in this field are put forward,hoping to provide some enlightenment for the synthesis of MOF-based SSEs,so as to create more efficient,long-lasting,and safe SSE-based secondary batteries.展开更多
The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion ...The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion migration,electrode/electrolyte surface/interface,structural(phase)and thermodynamics stability of the electrode materials,physics of intercalation and deintercalation.The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed.A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems.In order to fasten the progress of the new materials discovery and design for the next generation LSB,the Materials Genome Initiative(MGI)for LSB materials is a promising strategy and the related requirements are highlighted.展开更多
The growing concern for the exhaustion of fossil energy and the rapid revolution of electronics have created a rising demand for electrical energy storage devices with high energy density,for example,lithium secondary...The growing concern for the exhaustion of fossil energy and the rapid revolution of electronics have created a rising demand for electrical energy storage devices with high energy density,for example,lithium secondary batteries(LSBs).With high surface area,low cost,excellent mechanical strength,and electrochemical stability,amorphous carbon-based materials(ACMs)have been widely investigated as promising platform for anode materials in the LSBs.In this review,we firstly summarize recent advances in the synthesis of the ACMs with various morphologies,ranging from zero-to three-dimensional structures.Then,the use of ACMs in Li-ion batteries and Li metal batteries is discussed respectively with the focus on the relationship between the structural features of the as-prepared ACMs and their roles in promoting electrochemical performances.Finally,the remaining challenges and the possible prospects for the use of ACMs in the LSBs are proposed to provide some useful clews for the future developments of this attractive area.展开更多
The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of hi...The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of high-mass-loading electrodes(HMLEs)is a promising route to improve the energy density of batteries packed in limited spaces through the optimal enlargement of active material loading ratios and reduction of inactive component ratios in overall cell devices.However,HMLEs face significant challenges including inferior charge kinetics,poor electrode structural stability,and complex and expensive production processes.Based on this,this review will provide a comprehensive summary of HMLEs,beginning with a basic presentation of factors influencing HMLE electrochemical properties,the understanding of which can guide optimal HMLE designs.Rational strategies to improve the electrochemical performance of HMLEs accompanied by corresponding advantages and bottlenecks are subsequently discussed in terms of various factors ranging from inactive component modification to active material design to structural engineering at the electrode scale.This review will also present the recent progress and approaches of HMLEs applied in various EESSs,including advanced secondary batteries(lithium-/sodium-/potassium-/aluminum-/calcium-ion batteries,lithium metal anodes,lithium-sulfur batteries,lithium-air batteries,zinc batteries,magnesium batteries)and supercapacitors.Finally,this review will examine the challenges and prospects of HMLE commercialization with a focus on thermal safety,performance evaluation,advanced characterization,and production cost assessment to guide future development.展开更多
To address increasing energy supply challenges and allow for the effective utilization of renewable energy sources,transformational and reliable battery chemistry are critically needed to obtain higher energy densitie...To address increasing energy supply challenges and allow for the effective utilization of renewable energy sources,transformational and reliable battery chemistry are critically needed to obtain higher energy densities.Here,significant progress has been made in the past few decades in energetic battery systems based on the concept of multi-electron reactions to overcome existing barriers in conventional battery research and application.As a result,a systematic understanding of multi-electron chemistry is essential for the design of novel multi-electron reaction materials and the enhancement of corresponding battery performances.Based on this,this review will briefly present the advancements of multi-electron reaction materials from their evolutionary discovery from lightweight elements to the more recent multi-ion effect.In addition,this review will discuss representative multi-electron reaction chemistry and materials,including ferrates,metal borides,metal oxides,metal fluorides,lithium transition metal oxides,silicon,sulfur and oxygen.Furthermore,insertion-type,alloy-type and conversion-type multi-electron chemistry involving monovalent Li^(+) and Na^(+) cations,polyvalent Mg^(2+) and Al^(3+) cations beyond those of alkali metals as well as activated S^(2−) and O^(2−) anions are introduced in the enrichment and development of multi-electron reactions for electrochemical energy storage applications.Finally,this review will present the ongoing challenges and underpinning mechanisms limiting the performance of multi-electron reaction materials and corresponding battery systems.展开更多
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes ...The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries.展开更多
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica...Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.展开更多
With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devot...With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devoted into advanced electrode materials synthesis,while there is insufficient attention paid to regulate their interfaces.In this regard,the solid electrolyte interphase(SEI)at anode part has been studied for 40 years,already achieving remarkable outcomes on improving the stability of anode candidates.Unfortunately,the study on the cathode electrolyte interfaces(CEI)remains in infancy,which constitutes a potential restriction to the capacity contribution,stability and safety of cathodes.In fact,the native CEI generally possesses unfavorable characteristics against structural and compositional stability that requires demanding optimization strategies.Meanwhile,an in-depth understanding of the CEI is of great significance to guide the optimization principles in terms of composition,structure,growth mechanism,and electrochemical properties.In this literature,recent progress and advances of the CEI characterization methods and optimization protocols are summarized,and meanwhile the mutually-reinforced mechanisms between detection and modification are explained.The criteria and the potential development of the CEI characterization are proposed with insights of novel optimization directions.展开更多
A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One...A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One mole of this material could be incorporated up to 4 mole lithium at 0.2mA/cm^2 and 1.0V cut-off voltage, corresponding capacity about 340Ah/kg. Compared with the cell of Li/Li_(1+x)V_3O_5 the cell of Li/new bronze had higher capacity, smoother discberge curve, but lower plateau voltage (about 1.8V). The cycling behaviour of this material was good. The electrode insertion reaction was controlled by the lithium diffusion process in the bronze. This new bronze could be used for low voltage rechargeable lithium battery.展开更多
Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllabi...Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllability,and is a class of functional materials with great application prospects in energy storage and conversion.Here,this review firstly focuses on the concept,classification,and physicochemical property of lignin.Then,the application research of lignin in the field of electrochemical storage materials and devices are summarized,such as lignin-carbon materials and lignin-carbon composites in supercapacitors and secondary batteries.Finally,this review points out the bottlenecks that need to be solved urgently and the prospects for future research priorities.展开更多
Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and wit...Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and without additives was investigated with ex-situ heating/cooling treatment at a wide temperature range of-5 ?C to 60 ?C. It was observed that methanesulfonic acid, boric acid, hydrochloric acid, trifluoroacetic acid,polyacrylic acid, oxalic acid, methacrylic acid and phosphotungstic acid could improve the stability of the V(V) electrolyte at a certain range of temperature. Their electrochemical behaviors in the V(V) electrolyte were further studied by cyclic voltammetry(CV), steady state polarization and electrochemical impedance spectroscopy(EIS). The results showed that the electrochemical activity, including the reversibility of electrode reaction, the diffusivity of V(V) species, the polarization resistance and the flexibility of charge transfer for the V(V) electrolyte with these additives were all improved compared with the pristine solution.展开更多
基金the Foundation of Science and Technology Department of Heibei Province (No. 05547003D-4)the Foundation of the Education Department of Hebei Province, China (No. 2005356).
文摘Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.
基金supported by the Programs of National 973 (2011CB935900)NSFC (51231003 and 21231005)+1 种基金111 Project (B12015)Tianjin High-Tech (10SYSYJC27600)
文摘The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.
基金financially supported by Intergovernmental International Science and Technology Innovation Cooperation Project(2019YFE010186)the Hubei Provincial Natural Science Foundation(2019CFB452 and 2019CFB620)the Fundamental Research Funds for the Central Universities。
文摘Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.
基金Supported by Education Com mittee Foundation of L iaoning Province(No.970 912 12 11) .
文摘Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20200044)the National Natural Science Foundation of China(U1904215)aswellas Changjiang scholarspro gram of the Ministry of Education(Q2018270).
文摘Nowadays solid-state batteries have become a hot spot in the research of batteries and a significant candidate for commercial batteries for the increasing demands for good safety and excellent energy density.Metal-organic frameworks(MOFs)have been considered as suitable materials for solid-state electrolytes(SSEs)for the merits of regular channels and large specific surface areas,which can provide a promising structural platform for fast-ion conduction.Therefore,numerous kinds of MOF-based SSEs with enhanced electrochemical performance have been successfully synthesized and studied in recent years.In this review,the recent progress(synthesis methods,physical and chemical characteristics)of MOF-based SSEs for secondary batteries have been summarized.Finally,the challenges and opportunities faced by the future development in this field are put forward,hoping to provide some enlightenment for the synthesis of MOF-based SSEs,so as to create more efficient,long-lasting,and safe SSE-based secondary batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234013,11064004 and 11264014)supported by the"Gan-po talent 555"project of Jiangxi Province
文摘The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion migration,electrode/electrolyte surface/interface,structural(phase)and thermodynamics stability of the electrode materials,physics of intercalation and deintercalation.The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed.A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems.In order to fasten the progress of the new materials discovery and design for the next generation LSB,the Materials Genome Initiative(MGI)for LSB materials is a promising strategy and the related requirements are highlighted.
基金The authors acknowledge financial support by Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2020R01002)the National Natural Science Foundation of China(Nos.21902144,51722210,51972285,and U1802254)the Natural Science Foundation of Zhejiang Province(Nos.LY17E020010 and LD18E020003).
文摘The growing concern for the exhaustion of fossil energy and the rapid revolution of electronics have created a rising demand for electrical energy storage devices with high energy density,for example,lithium secondary batteries(LSBs).With high surface area,low cost,excellent mechanical strength,and electrochemical stability,amorphous carbon-based materials(ACMs)have been widely investigated as promising platform for anode materials in the LSBs.In this review,we firstly summarize recent advances in the synthesis of the ACMs with various morphologies,ranging from zero-to three-dimensional structures.Then,the use of ACMs in Li-ion batteries and Li metal batteries is discussed respectively with the focus on the relationship between the structural features of the as-prepared ACMs and their roles in promoting electrochemical performances.Finally,the remaining challenges and the possible prospects for the use of ACMs in the LSBs are proposed to provide some useful clews for the future developments of this attractive area.
基金the National Basic Research Program of China(Grant No.2015CB251100)the National Natural Science Foundation of China(Grant No.21975026)the Beijing Natural Science Foundation(Grant No.L182056).
文摘The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of high-mass-loading electrodes(HMLEs)is a promising route to improve the energy density of batteries packed in limited spaces through the optimal enlargement of active material loading ratios and reduction of inactive component ratios in overall cell devices.However,HMLEs face significant challenges including inferior charge kinetics,poor electrode structural stability,and complex and expensive production processes.Based on this,this review will provide a comprehensive summary of HMLEs,beginning with a basic presentation of factors influencing HMLE electrochemical properties,the understanding of which can guide optimal HMLE designs.Rational strategies to improve the electrochemical performance of HMLEs accompanied by corresponding advantages and bottlenecks are subsequently discussed in terms of various factors ranging from inactive component modification to active material design to structural engineering at the electrode scale.This review will also present the recent progress and approaches of HMLEs applied in various EESSs,including advanced secondary batteries(lithium-/sodium-/potassium-/aluminum-/calcium-ion batteries,lithium metal anodes,lithium-sulfur batteries,lithium-air batteries,zinc batteries,magnesium batteries)and supercapacitors.Finally,this review will examine the challenges and prospects of HMLE commercialization with a focus on thermal safety,performance evaluation,advanced characterization,and production cost assessment to guide future development.
基金support from the National Basic Research Program of China(Grant Nos.2015CB251100,2009CB220100,2002CB211800)the National Natural Science Foundation of China(Grant Nos.21975026,51804290)+2 种基金the Beijing Natural Science Foundation(Grant Nos.L182023,L182056).G.Tan acknowledges the support from Beijing Institute of Technology Teli Young Fellow Program(No.3090011181903)X.Wang thanks the support from the Beijing Institute of Technology Research Fund Program for Young Scholars(2019CX04092).
文摘To address increasing energy supply challenges and allow for the effective utilization of renewable energy sources,transformational and reliable battery chemistry are critically needed to obtain higher energy densities.Here,significant progress has been made in the past few decades in energetic battery systems based on the concept of multi-electron reactions to overcome existing barriers in conventional battery research and application.As a result,a systematic understanding of multi-electron chemistry is essential for the design of novel multi-electron reaction materials and the enhancement of corresponding battery performances.Based on this,this review will briefly present the advancements of multi-electron reaction materials from their evolutionary discovery from lightweight elements to the more recent multi-ion effect.In addition,this review will discuss representative multi-electron reaction chemistry and materials,including ferrates,metal borides,metal oxides,metal fluorides,lithium transition metal oxides,silicon,sulfur and oxygen.Furthermore,insertion-type,alloy-type and conversion-type multi-electron chemistry involving monovalent Li^(+) and Na^(+) cations,polyvalent Mg^(2+) and Al^(3+) cations beyond those of alkali metals as well as activated S^(2−) and O^(2−) anions are introduced in the enrichment and development of multi-electron reactions for electrochemical energy storage applications.Finally,this review will present the ongoing challenges and underpinning mechanisms limiting the performance of multi-electron reaction materials and corresponding battery systems.
基金the financial support of the National Natural Science Foundation of China(21961044,22169024)the Yunnan Fundamental Research Projects(202105AC160072,202101BC070001-019,202101AT070280,202102AB080017)the Yunnan University’s Research Innovation Fund for graduate students(2021Y394)。
文摘The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries.
基金financially supported by NSAF(No.U1530155)Ministry of Science and Technology(MOST)of China,US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle,the Nation Key Basic Research Program of China(No.2015CB251100)Beijing Key Laboratory of Environmental Science and Engineering(No.20131039031)
基金supported by the Ministry of Science and Technology of China(Nos.2016YFA0204100 and 2016YFA0200200)the National Natural Science Foundation of China(Nos.21321002,21573220 and 21303191)the strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09030100)
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20170630)the National Natural Science Foundation of China(51802149 and U1801251)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Nanjing University Technology Innovation Fund Project。
文摘Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.
基金supported by the National Natural Science Foundation of China(51804290,22075025,21975026)the Beijing Natural Science Foundation(L182023)+1 种基金the Science and Technology Program of Guangdong Province(Grant No.2020B0909030004)the Beijing Institute of Technology Research Fund Program for Young Scholars(2019CX04092)。
文摘With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devoted into advanced electrode materials synthesis,while there is insufficient attention paid to regulate their interfaces.In this regard,the solid electrolyte interphase(SEI)at anode part has been studied for 40 years,already achieving remarkable outcomes on improving the stability of anode candidates.Unfortunately,the study on the cathode electrolyte interfaces(CEI)remains in infancy,which constitutes a potential restriction to the capacity contribution,stability and safety of cathodes.In fact,the native CEI generally possesses unfavorable characteristics against structural and compositional stability that requires demanding optimization strategies.Meanwhile,an in-depth understanding of the CEI is of great significance to guide the optimization principles in terms of composition,structure,growth mechanism,and electrochemical properties.In this literature,recent progress and advances of the CEI characterization methods and optimization protocols are summarized,and meanwhile the mutually-reinforced mechanisms between detection and modification are explained.The criteria and the potential development of the CEI characterization are proposed with insights of novel optimization directions.
基金This project is supported by The National Natural Science Foundation of China
文摘A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One mole of this material could be incorporated up to 4 mole lithium at 0.2mA/cm^2 and 1.0V cut-off voltage, corresponding capacity about 340Ah/kg. Compared with the cell of Li/Li_(1+x)V_3O_5 the cell of Li/new bronze had higher capacity, smoother discberge curve, but lower plateau voltage (about 1.8V). The cycling behaviour of this material was good. The electrode insertion reaction was controlled by the lithium diffusion process in the bronze. This new bronze could be used for low voltage rechargeable lithium battery.
基金supported by the National Natural Science Foundation of China(NSFC)(No.21908071,21908205,22108135)Natural Science Foundation of Guangdong,(2020A1515011319)+3 种基金Henan Provincial Key Research and Development Program(No.202102210312)Natural Science Foundation of Shandong Province(ZR2020QB197)CAS Key Laboratory of Renewable Energy(No.E129kf0301)Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China(KF201902)。
文摘Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllability,and is a class of functional materials with great application prospects in energy storage and conversion.Here,this review firstly focuses on the concept,classification,and physicochemical property of lignin.Then,the application research of lignin in the field of electrochemical storage materials and devices are summarized,such as lignin-carbon materials and lignin-carbon composites in supercapacitors and secondary batteries.Finally,this review points out the bottlenecks that need to be solved urgently and the prospects for future research priorities.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
基金supported by the Doctoral Program of Higher Education(No.20110181110003)the Collaborative innovation fund by China Academyof Engineering Physics and Sichuan University(No.XTCX2011001)the Sichuan Provincial Department of Science and Technology R&D Program(No.2013FZ0034)
文摘Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and without additives was investigated with ex-situ heating/cooling treatment at a wide temperature range of-5 ?C to 60 ?C. It was observed that methanesulfonic acid, boric acid, hydrochloric acid, trifluoroacetic acid,polyacrylic acid, oxalic acid, methacrylic acid and phosphotungstic acid could improve the stability of the V(V) electrolyte at a certain range of temperature. Their electrochemical behaviors in the V(V) electrolyte were further studied by cyclic voltammetry(CV), steady state polarization and electrochemical impedance spectroscopy(EIS). The results showed that the electrochemical activity, including the reversibility of electrode reaction, the diffusivity of V(V) species, the polarization resistance and the flexibility of charge transfer for the V(V) electrolyte with these additives were all improved compared with the pristine solution.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
基金supported by National Natural Science Foundation of China(61520106008,U1564207,61503149)High Technology Research and Development Program of Jilin(20130204021GX)+1 种基金Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)Graduate Innovation Fund of Jilin University(2015148)