期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of secondary carbide precipitation and transformation on abrasion resistance of a 3Cr15Mo1V1.5 white iron 被引量:4
1
作者 Haohuai Liu Jun Wang +3 位作者 Baoluo Shen Hongshan Yang Shengji Gao Sijiu Huang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期231-235,共5页
The relationship between the secondary carbide precipitation and transformation of the 3Cr15Mo1V1.5 white iron and abrasion resistance was investigated by using optical microscope (OM), transmission electron microsc... The relationship between the secondary carbide precipitation and transformation of the 3Cr15Mo1V1.5 white iron and abrasion resistance was investigated by using optical microscope (OM), transmission electron microscopy (TEM) and X-ray diffrac- tion (XRD). The results show that the properties of secondary carbides precipitated at holding stage play an important role in the abrasion resistance. After certain holding time at 833 K subcritical treatment, the grainy (Fe, Cr)23C6 carbide precipitated and the fresh martensite transformed at the holding stage for 3Cr15Mo1V1.5 white iron improve the bulk hardness and abrasion resistance of the alloy. Prolonging holding time, MoC and (Cr, V)2C precipitations cause the secondary hardening peak and the corresponding better abrasion resistance. Finally, granular (Fe, Cr)23C6 carbide in situ transforms into laminar M3C carbide and the matrix structure transforms into pearlitic matrix. These changes weaken hardness and abrasion resistance of the alloy sharply. 展开更多
关键词 high chromium white iron abrasion resistance secondary carbide PRECIPITATION
下载PDF
Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel 被引量:11
2
作者 Jun Wang Hong Zou +3 位作者 Cong Li Ruling Zuo Shaoyu Qiu Baoluo Shen 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期235-239,共5页
The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the b... The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases. 展开更多
关键词 17-4 PH stainless steel H1100 condition PRECIPITATION copper secondary carbide
下载PDF
Phase Transformation of a Cold Work Tool Steel during Tempering 被引量:2
3
作者 Hong-xiao CHI Dang-shen MA +2 位作者 Hui-xia XU Wang-long ZHU Jian-qing JIANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期484-488,共5页
The hardness and microstructure evolution of a 8% Cr cold work tool steel during tempering for 40 h were investigated. Transmission electron microscope examinations showed that M_3C carbides precipitated from supersat... The hardness and microstructure evolution of a 8% Cr cold work tool steel during tempering for 40 h were investigated. Transmission electron microscope examinations showed that M_3C carbides precipitated from supersaturated martensite after tempering at 350 ℃. When the tempering temperature was higher than 520 ℃,the M_(23)C_6 carbides precipitated to substitute for M_3C carbides. After ageing at the temperature of 520 ℃ for 40 h,it was observed that very fine and dense secondary Mo_2C precipitates were precipitated. Thus,it can be concluded that the early stage of Mo_2C-carbide precipitation is like to be Gunier-Preston( G-P) zone formed by [Mo-C] segregation group which is responsible for the secondary hardening peak at 520 ℃. Overageing at 700 ℃ resulted in recovery of martensitic microstructure and precipitation of M_(23)C_6 carbides.When ageing at 700 ℃ for more than 20 h,recrystallization occurred,which resulted in a change of the matrix morphology from martensitic plates to equiaxed ferrite. It was noticed that the size of recrystallized grain / subgrain was very fine,which was attributed to the pinning effect of M_(23)C_6 precipitates. 展开更多
关键词 cold work tool steel secondary hardening tempering carbide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部